切触几何

✍ dations ◷ 2025-02-23 16:28:39 #微分几何,流形上的结构,辛拓扑

数学上,切触几何(英语:Contact geometry)是研究流形上的超平面的几何。根据弗洛比尼斯定理,这个(大致来讲)可以通过叶状结构的不成立来识别。作为它的姐妹,辛几何属于偶数维的世界,而切触几何是奇数维的对应几何。

切触几何和辛几何一样在物理学中有广泛的应用,例如,几何光学、经典力学、热力学、几何量子化、可积系统、以及诸如控制论这样的应用数学。它也可以用于证明有趣的事情,例如‘你总是可以平泊你的汽车,只要空间足够大’。切触几何有很多低维拓扑中的应用;一个这种相关性的表现就是每个三维流形都有一个切触结构。

一个 α在2+1维流形上就是一个(局部)1-流形,具有属性

一个 ξ在一个流形上就是一个切触形式α的核,也就是,一个完全不可积超平面场。大致来讲,这表示你无法在一个开集上找到和ξ相切的一片超曲面。

从定义可以导出α限制到ξ上时是非退化的。这表示ξ是一个该流形上的辛丛。因为辛空间是偶数维的,切触流形必须是奇数维的。

作为基本例子,考虑3,使用一下坐标

1-形式

在一点的切除平面ξ

由下列向量张成

(画一幅图像)。实际上很容易将这个例子推广到任意。根据达布定理,一个流形上的每个切触结构局部看起来就是这个例子。

任何-维流形的余切丛 本身是一个流形(维数为2),并且自然地支持一个恰当辛结构ω = λ。(这个1-形式λ有时称为)。在流形上取一个黎曼度量。这允许我们考虑每个余切平面中的单位球。刘维尔形式限制到单位余切丛是一个切触结构。向量场 (唯一地)由λ()=1和λ对于所有该度量的测地流生成的向量场成立。

另一方面,可以通过考虑来构造一个切触流形。采用坐标(),这个流形有一个切触结构

最后这个例子表明如何从辛流形得到切触流形。同样可以从切触流形构造一个辛流形,也是通过和的直积:若α是一个切触形式,在流形上,则

是一个上的辛流形,其中表示在-方向的变量。

切触流形最有意思的子空间是它的勒让德子流形。在(2n+1)-维流形上的切触超平面场的不可积性意味着没有2n-维子流形可以将它作为它的切丛,局部的都不行。但是,通常可以找到一个n-维(嵌入或者浸入)子流形,其切空间位于切触场内。勒让德子流形和辛流形的拉格朗日子流形类似。它们之间有一个精确的关系:勒让德子流形在切触流形的辛化中的提升是一个拉格朗日子流形。勒让德子流形的最简单的例子是在一个切触三维流形中的勒让德纽结。不等价的勒让德纽结可能作为光滑纽结是等价的。

勒让德子流形是很刚性的对象;在一些情况下,子流形为了成为勒让德子流形而必须解开纽结。辛场论提供勒称为切触同调的勒让德子流形的不变量,它们有时可以用于区分拓扑等价的勒让德子流形。

若α是一个给定切触结构的切触形式,Reeb向量场R可以定义维dα的核的唯一满足α(R)=1的元素。其动力学可以用于研究切触流形的结构甚或用诸如辛场论和嵌入切触同调这类的Floer同调来研究流形本身。

切触几何的根源出现于克里斯蒂安·惠更斯、Barrow和牛顿的著作中。切触变换的理论(也即保持一个切触结构的变换)是索甫斯·李发展的,其目的是双重的,包括研究微分方程(例如勒让德变换)和表述射影对偶性中常见的'空间元素的变换'。

切触几何入门:

切触三维流形和勒让德纽结:

切触几何的历史信息:

相关

  • 和县人和县人(学名:Homo erectus hexianensis),旧称和县猿人,学名直立人和县亚种,是在更新世中期、旧石器时代早期生活在华东地区的直立人的代表之一。1980~1981年间,安徽和县陶店镇汪家山
  • SFsub2/sub二氟化硫是一种硫的卤化物,化学式为SF2。它可由二氯化硫与氟化钾或氟化汞在低压在反应制得:二氟化硫分子中键角为98°,键长为159pm。这种化合物十分不稳定,会分解为FSSF3。它的
  • 西班牙皇家学院西班牙皇家语言学院(西班牙语:Real Academia Española,简称RAE)是西班牙王室设立的一个机构,负责翻译西班牙语。总部设在马德里,座右铭是“它清理、修复,并创造辉煌”(Limpia, fija
  • 中兴新村坐标:23°57′18.84″N 120°41′14.48″E / 23.9552333°N 120.6873556°E / 23.9552333; 120.6873556中兴新村是位于台湾南投县南投市北部的新市镇,是台湾战后第二个新市镇(
  • 伦敦经济学院Rerum cognoscere causas To know the causes of things (伦敦政治经济学院(英语:The London School of Economics and Political Science;缩写:LSE;简称:伦敦经济学院或伦敦政经
  • 中提琴中提琴(英语:Viola)是一种弓弦乐器,其音域比小提琴低完全五度。其空弦从粗到细依序是c3-g3-d4-a4。音色相较于小提琴、大提琴显得相对隐晦。平时使用中音谱记号(alto clef)记谱,高
  • 东港坐标:44°54′49″N 67°0′14″W / 44.91361°N 67.00389°W / 44.91361; -67.00389 伊斯特波特(英语:Eastport)是美国缅因州华盛顿县的一个城市,位于穆斯岛东南岸,隔海与加拿大
  • M24狙击手武器系统M24狙击步枪(M24 SWS,Sniper Weapon System—狙击手武器系统)是雷明登700步枪的衍生型,提供给军队及警察用户,在1988年正式成为美国陆军的制式狙击步枪,以色列国防军(IDF)亦有装备。
  • 凯恩斯效应凯恩斯效应(Keynes Effect)是宏观经济学中利率传导机制的一种,它描写价格变化对整个商品需求的影响,即价格水平P下降-实际货币供应(M/P)增加-利率r下降-支出(投资)I增加-产出Y增加。在IS
  • 弗兰兹·库恩弗兰兹·库恩(德语:Franz W. Kuhn,1884年3月10日-1961年1月22日),德国著名中国文学翻译家。中国古典文学的《红楼梦》、《三国演义》、《水浒传》、《金瓶梅》全由库恩翻译成德文,