切触几何

✍ dations ◷ 2025-06-08 09:49:37 #微分几何,流形上的结构,辛拓扑

数学上,切触几何(英语:Contact geometry)是研究流形上的超平面的几何。根据弗洛比尼斯定理,这个(大致来讲)可以通过叶状结构的不成立来识别。作为它的姐妹,辛几何属于偶数维的世界,而切触几何是奇数维的对应几何。

切触几何和辛几何一样在物理学中有广泛的应用,例如,几何光学、经典力学、热力学、几何量子化、可积系统、以及诸如控制论这样的应用数学。它也可以用于证明有趣的事情,例如‘你总是可以平泊你的汽车,只要空间足够大’。切触几何有很多低维拓扑中的应用;一个这种相关性的表现就是每个三维流形都有一个切触结构。

一个 α在2+1维流形上就是一个(局部)1-流形,具有属性

一个 ξ在一个流形上就是一个切触形式α的核,也就是,一个完全不可积超平面场。大致来讲,这表示你无法在一个开集上找到和ξ相切的一片超曲面。

从定义可以导出α限制到ξ上时是非退化的。这表示ξ是一个该流形上的辛丛。因为辛空间是偶数维的,切触流形必须是奇数维的。

作为基本例子,考虑3,使用一下坐标

1-形式

在一点的切除平面ξ

由下列向量张成

(画一幅图像)。实际上很容易将这个例子推广到任意。根据达布定理,一个流形上的每个切触结构局部看起来就是这个例子。

任何-维流形的余切丛 本身是一个流形(维数为2),并且自然地支持一个恰当辛结构ω = λ。(这个1-形式λ有时称为)。在流形上取一个黎曼度量。这允许我们考虑每个余切平面中的单位球。刘维尔形式限制到单位余切丛是一个切触结构。向量场 (唯一地)由λ()=1和λ对于所有该度量的测地流生成的向量场成立。

另一方面,可以通过考虑来构造一个切触流形。采用坐标(),这个流形有一个切触结构

最后这个例子表明如何从辛流形得到切触流形。同样可以从切触流形构造一个辛流形,也是通过和的直积:若α是一个切触形式,在流形上,则

是一个上的辛流形,其中表示在-方向的变量。

切触流形最有意思的子空间是它的勒让德子流形。在(2n+1)-维流形上的切触超平面场的不可积性意味着没有2n-维子流形可以将它作为它的切丛,局部的都不行。但是,通常可以找到一个n-维(嵌入或者浸入)子流形,其切空间位于切触场内。勒让德子流形和辛流形的拉格朗日子流形类似。它们之间有一个精确的关系:勒让德子流形在切触流形的辛化中的提升是一个拉格朗日子流形。勒让德子流形的最简单的例子是在一个切触三维流形中的勒让德纽结。不等价的勒让德纽结可能作为光滑纽结是等价的。

勒让德子流形是很刚性的对象;在一些情况下,子流形为了成为勒让德子流形而必须解开纽结。辛场论提供勒称为切触同调的勒让德子流形的不变量,它们有时可以用于区分拓扑等价的勒让德子流形。

若α是一个给定切触结构的切触形式,Reeb向量场R可以定义维dα的核的唯一满足α(R)=1的元素。其动力学可以用于研究切触流形的结构甚或用诸如辛场论和嵌入切触同调这类的Floer同调来研究流形本身。

切触几何的根源出现于克里斯蒂安·惠更斯、Barrow和牛顿的著作中。切触变换的理论(也即保持一个切触结构的变换)是索甫斯·李发展的,其目的是双重的,包括研究微分方程(例如勒让德变换)和表述射影对偶性中常见的'空间元素的变换'。

切触几何入门:

切触三维流形和勒让德纽结:

切触几何的历史信息:

相关

  • 平民保育团平民保育团(Civilian Conservation Corps,CCC)是美国在1933年至1942年间,对19至24岁的单身救济户失业男性推行的以工代赈计划,这些救济户都是在经济大萧条期间失业、难以找到工作
  • 呼吸 (生理学)呼吸(respiration)在生理学上,是指氧从空气传送到生物组织,以及二氧化碳从生物组织传送回空气的过程。生理学上的呼吸和生物化学中的呼吸,生物化学中的呼吸是指呼吸作用,在细胞之
  • 瓦尔那瓦尔那(梵语:वर्ण,转写:Varṇa)是印度教经典中解释种姓制度的概念,其内涵主要见于《摩奴法典》与《瞿昙法经》等早期婆罗门教经典。在该制度中主要指四种不同的阶层,经典中根据
  • 经济部水利署北区水资源局经济部水利署北区水资源局是中华民国经济部水利署所属机构,专责新竹以北地区水资源开发、维护管理及经营事项。
  • 东三省总督东三省总督(满语:ᡩᡝᡵᡤᡳ ᡳᠯᠠᠨ ᡤᠣᠯᠣᡳ ᡠᡥᡝᡵᡳ ᡴᠠᡩᠠᠯᠠᡵᠠ ᠠᠮᠪᠠᠨ,穆麟德:dergi ilan goloi uheri kadalara amban),正式官衔为总督东三省等处地方兼管三
  • 阿那萨吉人阿那萨吉人,或称古普韦布洛人(Ancestral Puebloans),是北美西南地区的古代印第安文化。主要分布在美国亚利桑那州的北部高原。普韦布洛的建筑形式非常特别,房屋以土坯和石头制造,
  • 3K党三K党(英语:Ku Klux Klan,/ˈkuː ˈklʌks ˈklæn, ˈkjuː/,简称KKK)是指美国历史上和现代三个不同时期奉行白人至上主义运动和基督教恐怖主义的民间团体,也是美国种族主义的代
  • 理查德·金森理查德·保罗·法兰克·金森(英语:Richard Paul Franck Kingson,1978年6月13日-),出生在阿克拉,是一名加纳足球运动员,司职门将,现是自由身球员。他亦被称为法鲁克·居索伊(土耳其语:Fa
  • 我和奥逊·威尔斯《我和奥逊·威尔斯》()是2008年英国和美国合拍的、理查德·林克莱特执导的历史剧情片,改编自Robert Kaplow所著的同名小说。Zac Efron、Christian McKay和Claire Danes主演。2
  • 莎布·尼古拉丝莎布·尼古拉丝(英语:Shub-Niggurath),美国小说家霍华德·菲利普·洛夫克拉夫特所创造的克苏鲁神话中的一名邪神,最早出现在洛夫克拉夫特写于1927年的小说《最后测试》(The Last