切触几何

✍ dations ◷ 2025-12-06 08:00:05 #微分几何,流形上的结构,辛拓扑

数学上,切触几何(英语:Contact geometry)是研究流形上的超平面的几何。根据弗洛比尼斯定理,这个(大致来讲)可以通过叶状结构的不成立来识别。作为它的姐妹,辛几何属于偶数维的世界,而切触几何是奇数维的对应几何。

切触几何和辛几何一样在物理学中有广泛的应用,例如,几何光学、经典力学、热力学、几何量子化、可积系统、以及诸如控制论这样的应用数学。它也可以用于证明有趣的事情,例如‘你总是可以平泊你的汽车,只要空间足够大’。切触几何有很多低维拓扑中的应用;一个这种相关性的表现就是每个三维流形都有一个切触结构。

一个 α在2+1维流形上就是一个(局部)1-流形,具有属性

一个 ξ在一个流形上就是一个切触形式α的核,也就是,一个完全不可积超平面场。大致来讲,这表示你无法在一个开集上找到和ξ相切的一片超曲面。

从定义可以导出α限制到ξ上时是非退化的。这表示ξ是一个该流形上的辛丛。因为辛空间是偶数维的,切触流形必须是奇数维的。

作为基本例子,考虑3,使用一下坐标

1-形式

在一点的切除平面ξ

由下列向量张成

(画一幅图像)。实际上很容易将这个例子推广到任意。根据达布定理,一个流形上的每个切触结构局部看起来就是这个例子。

任何-维流形的余切丛 本身是一个流形(维数为2),并且自然地支持一个恰当辛结构ω = λ。(这个1-形式λ有时称为)。在流形上取一个黎曼度量。这允许我们考虑每个余切平面中的单位球。刘维尔形式限制到单位余切丛是一个切触结构。向量场 (唯一地)由λ()=1和λ对于所有该度量的测地流生成的向量场成立。

另一方面,可以通过考虑来构造一个切触流形。采用坐标(),这个流形有一个切触结构

最后这个例子表明如何从辛流形得到切触流形。同样可以从切触流形构造一个辛流形,也是通过和的直积:若α是一个切触形式,在流形上,则

是一个上的辛流形,其中表示在-方向的变量。

切触流形最有意思的子空间是它的勒让德子流形。在(2n+1)-维流形上的切触超平面场的不可积性意味着没有2n-维子流形可以将它作为它的切丛,局部的都不行。但是,通常可以找到一个n-维(嵌入或者浸入)子流形,其切空间位于切触场内。勒让德子流形和辛流形的拉格朗日子流形类似。它们之间有一个精确的关系:勒让德子流形在切触流形的辛化中的提升是一个拉格朗日子流形。勒让德子流形的最简单的例子是在一个切触三维流形中的勒让德纽结。不等价的勒让德纽结可能作为光滑纽结是等价的。

勒让德子流形是很刚性的对象;在一些情况下,子流形为了成为勒让德子流形而必须解开纽结。辛场论提供勒称为切触同调的勒让德子流形的不变量,它们有时可以用于区分拓扑等价的勒让德子流形。

若α是一个给定切触结构的切触形式,Reeb向量场R可以定义维dα的核的唯一满足α(R)=1的元素。其动力学可以用于研究切触流形的结构甚或用诸如辛场论和嵌入切触同调这类的Floer同调来研究流形本身。

切触几何的根源出现于克里斯蒂安·惠更斯、Barrow和牛顿的著作中。切触变换的理论(也即保持一个切触结构的变换)是索甫斯·李发展的,其目的是双重的,包括研究微分方程(例如勒让德变换)和表述射影对偶性中常见的'空间元素的变换'。

切触几何入门:

切触三维流形和勒让德纽结:

切触几何的历史信息:

相关

  • 多伦多大多伦多地区 (英语:Greater Toronto Area,当地缩写作GTA)是加拿大人口密度最高的都会区。按安大略省政府规划部门的定义,大多地区的人口在2011年全国普查时为 6,054,191 人。除
  • 朊病毒朊毒体(英语:prion,发音为/ˈpriː.ɒn/;又译为普利昂、蛋白质侵染因子、毒朊、感染性蛋白质、普恩蛋白等)是一种具感染性的致病因子,能引发人类及哺乳动物的传染性海绵状脑病。朊
  • 奥斯维辛集中营纳粹集中营转移营比利时:布伦东克堡垒 · 梅赫伦转移营法国:居尔集中营 · 德朗西集中营意大利:波尔查诺转移营荷兰:阿默斯福特集中营 · 韦斯特博克转移营挪威:法斯塔德集中营部
  • 猫王未死阴谋论不少人认为猫王埃尔维斯·普雷斯利在1977年并未死亡,但由于各种原因选择藏匿身份并且仍然存活着。 这种说法在Gail Brewer-Giorgio(英语:Gail Brewer-Giorgio)和一些作家的书中
  • 色情书刊色情书刊是具有色情娱乐要素的书籍总称,俗称小本,包括成人写真集、色情小说、成人漫画等。色情书刊起源很早,春宫图可以追溯至汉朝。日本为了申请2020年奥运主办权,于2012年公布
  • 黄奕聪黄奕聪(印尼语:Eka Tjipta Widjaja,1921年2月27日-2019年1月26日)是一位印度尼西亚华人企业家及慈善家。1921年出生于福建泉州。 他是一位苏拉威西岛商人的儿子。 他九岁时搬到印
  • 反垃圾邮件技术为了阻止垃圾邮件(mail spam),电子邮件系统的用户和管理员都使用了各种反垃圾邮件技术(英语:anti-spam techniques)。这些技术中的一些已经被嵌入产品、服务和软件中来帮助用户和
  • 周昌 (汉朝)周昌(?-前192年),汉朝大臣,泗水郡沛县人,周苛从弟。为人正直,楚汉战争时有军功,刘邦登基,封周昌为汾阴侯,官御史大夫。为人强悍有力,敢于直言,萧何、曹参等高官都非常尊敬周昌。周昌曾力
  • 毕三才毕三才,江西贵溪人,明朝政治人物。同进士出身。毕济川之侄、毕济时之子。万历十七年(1589年),登进士,授监察御史。
  • 林鼎林鼎(891年-944年),字涣文。福建侯官(今福州市)人,生于明州(今浙江宁波)。林鼎曾仕吴越武肃王钱镠,为观察押牙,后进入文穆王钱元瓘幕府。后唐长兴三年(932年)钱元瓘继位后,林鼎署镇海军