切触几何

✍ dations ◷ 2025-11-08 03:09:55 #微分几何,流形上的结构,辛拓扑

数学上,切触几何(英语:Contact geometry)是研究流形上的超平面的几何。根据弗洛比尼斯定理,这个(大致来讲)可以通过叶状结构的不成立来识别。作为它的姐妹,辛几何属于偶数维的世界,而切触几何是奇数维的对应几何。

切触几何和辛几何一样在物理学中有广泛的应用,例如,几何光学、经典力学、热力学、几何量子化、可积系统、以及诸如控制论这样的应用数学。它也可以用于证明有趣的事情,例如‘你总是可以平泊你的汽车,只要空间足够大’。切触几何有很多低维拓扑中的应用;一个这种相关性的表现就是每个三维流形都有一个切触结构。

一个 α在2+1维流形上就是一个(局部)1-流形,具有属性

一个 ξ在一个流形上就是一个切触形式α的核,也就是,一个完全不可积超平面场。大致来讲,这表示你无法在一个开集上找到和ξ相切的一片超曲面。

从定义可以导出α限制到ξ上时是非退化的。这表示ξ是一个该流形上的辛丛。因为辛空间是偶数维的,切触流形必须是奇数维的。

作为基本例子,考虑3,使用一下坐标

1-形式

在一点的切除平面ξ

由下列向量张成

(画一幅图像)。实际上很容易将这个例子推广到任意。根据达布定理,一个流形上的每个切触结构局部看起来就是这个例子。

任何-维流形的余切丛 本身是一个流形(维数为2),并且自然地支持一个恰当辛结构ω = λ。(这个1-形式λ有时称为)。在流形上取一个黎曼度量。这允许我们考虑每个余切平面中的单位球。刘维尔形式限制到单位余切丛是一个切触结构。向量场 (唯一地)由λ()=1和λ对于所有该度量的测地流生成的向量场成立。

另一方面,可以通过考虑来构造一个切触流形。采用坐标(),这个流形有一个切触结构

最后这个例子表明如何从辛流形得到切触流形。同样可以从切触流形构造一个辛流形,也是通过和的直积:若α是一个切触形式,在流形上,则

是一个上的辛流形,其中表示在-方向的变量。

切触流形最有意思的子空间是它的勒让德子流形。在(2n+1)-维流形上的切触超平面场的不可积性意味着没有2n-维子流形可以将它作为它的切丛,局部的都不行。但是,通常可以找到一个n-维(嵌入或者浸入)子流形,其切空间位于切触场内。勒让德子流形和辛流形的拉格朗日子流形类似。它们之间有一个精确的关系:勒让德子流形在切触流形的辛化中的提升是一个拉格朗日子流形。勒让德子流形的最简单的例子是在一个切触三维流形中的勒让德纽结。不等价的勒让德纽结可能作为光滑纽结是等价的。

勒让德子流形是很刚性的对象;在一些情况下,子流形为了成为勒让德子流形而必须解开纽结。辛场论提供勒称为切触同调的勒让德子流形的不变量,它们有时可以用于区分拓扑等价的勒让德子流形。

若α是一个给定切触结构的切触形式,Reeb向量场R可以定义维dα的核的唯一满足α(R)=1的元素。其动力学可以用于研究切触流形的结构甚或用诸如辛场论和嵌入切触同调这类的Floer同调来研究流形本身。

切触几何的根源出现于克里斯蒂安·惠更斯、Barrow和牛顿的著作中。切触变换的理论(也即保持一个切触结构的变换)是索甫斯·李发展的,其目的是双重的,包括研究微分方程(例如勒让德变换)和表述射影对偶性中常见的'空间元素的变换'。

切触几何入门:

切触三维流形和勒让德纽结:

切触几何的历史信息:

相关

  • 扁桃腺炎扁桃体炎(Tonsillitis),或称扁桃腺炎,通常会快速发病。扁桃体炎属于咽炎的一种。其症状包括咽喉痛、发烧、扁桃腺肿大、吞咽困难、颈部的淋巴结肿大(英语:Lymphadenopathy)。并发症
  • 猫叫综合征猫叫综合征(英语:Cri du chat syndrome),也称猫哭症、猫啼症、5号染色体短臂缺失综合征(chromosome 5p deletion syndrome),是一种由于第五号染色体短臂缺损而引起的罕见基因异常病
  • 世界卫生组织基本药物世界卫生组织基本药物标准清单(法语:Listes modèles OMS des médicaments essentiels;英语:WHO Model List of Essential Medicines;简称EML)是世界卫生组织(WHO或称世卫组织)的出
  • 继承权继承(英语:inheritance),在所有权人死亡后,将其财产、债务、爵位、世袭官职等转移给一个或多个继承人。通常遵循法律和习俗。所有的人类文化都有继承规则,继承死者的遗产是普世文
  • span class=nowrapReOsub3/subNOsub3/sub/span&硝酸三氧铼是一种无机化合物,化学式为ReO3NO3。硝酸三氧铼可由氯化三氧铼和五氧化二氮反应得到:七氧化二铼和五氧化二氮的硝基甲烷饱和溶液反应,也能得到硝酸三氧铼。
  • 达兰宰赫兰(阿拉伯语 الظهران aẓ-Ẓahrān)位于沙特阿拉伯东部省达曼市郊,是沙特阿拉伯石油工业的重要中心。1931年,首次在宰赫蘭地区发现石油储备,美国加利福尼亚标准石油公
  • 大根岛大根岛是位于日本岛根县的中海里的岛屿,与其东北侧的江岛(日语:江島 (島根県))同样为玄武岩火山岛。现在大根岛借由两条过去对中海进行围垦工程所遗留下来的堤防道路与日本本州
  • 三苗三苗,出自缙云氏,是中国汉族传说中黄帝至尧舜禹时代的一古国名,也被称为有苗、有苗氏、苗民,是炎黄集团的平民。三苗主要分布于长江中下游一带,战国时人认为上古三苗部落位于古洞
  • 丁丙诺啡/纳洛酮丁丙诺啡/纳洛酮(Buprenorphine/naloxone),会以舒倍生(Suboxone)之类的药品名称贩售,是由丁丙诺啡及纳洛酮组成的复方药物(英语:combination medication),此药物是用来治疗鸦片物质依
  • 彩色滤光片彩色滤光片(color gel或color filter),是彩色液晶显示器(LCD)由灰阶变为彩色的关键零组件,借由LCD内部的背光模组提供光源,再搭配驱动IC与液晶控制形成灰阶显示,将光源穿过彩色滤