切触几何

✍ dations ◷ 2025-12-02 03:50:33 #微分几何,流形上的结构,辛拓扑

数学上,切触几何(英语:Contact geometry)是研究流形上的超平面的几何。根据弗洛比尼斯定理,这个(大致来讲)可以通过叶状结构的不成立来识别。作为它的姐妹,辛几何属于偶数维的世界,而切触几何是奇数维的对应几何。

切触几何和辛几何一样在物理学中有广泛的应用,例如,几何光学、经典力学、热力学、几何量子化、可积系统、以及诸如控制论这样的应用数学。它也可以用于证明有趣的事情,例如‘你总是可以平泊你的汽车,只要空间足够大’。切触几何有很多低维拓扑中的应用;一个这种相关性的表现就是每个三维流形都有一个切触结构。

一个 α在2+1维流形上就是一个(局部)1-流形,具有属性

一个 ξ在一个流形上就是一个切触形式α的核,也就是,一个完全不可积超平面场。大致来讲,这表示你无法在一个开集上找到和ξ相切的一片超曲面。

从定义可以导出α限制到ξ上时是非退化的。这表示ξ是一个该流形上的辛丛。因为辛空间是偶数维的,切触流形必须是奇数维的。

作为基本例子,考虑3,使用一下坐标

1-形式

在一点的切除平面ξ

由下列向量张成

(画一幅图像)。实际上很容易将这个例子推广到任意。根据达布定理,一个流形上的每个切触结构局部看起来就是这个例子。

任何-维流形的余切丛 本身是一个流形(维数为2),并且自然地支持一个恰当辛结构ω = λ。(这个1-形式λ有时称为)。在流形上取一个黎曼度量。这允许我们考虑每个余切平面中的单位球。刘维尔形式限制到单位余切丛是一个切触结构。向量场 (唯一地)由λ()=1和λ对于所有该度量的测地流生成的向量场成立。

另一方面,可以通过考虑来构造一个切触流形。采用坐标(),这个流形有一个切触结构

最后这个例子表明如何从辛流形得到切触流形。同样可以从切触流形构造一个辛流形,也是通过和的直积:若α是一个切触形式,在流形上,则

是一个上的辛流形,其中表示在-方向的变量。

切触流形最有意思的子空间是它的勒让德子流形。在(2n+1)-维流形上的切触超平面场的不可积性意味着没有2n-维子流形可以将它作为它的切丛,局部的都不行。但是,通常可以找到一个n-维(嵌入或者浸入)子流形,其切空间位于切触场内。勒让德子流形和辛流形的拉格朗日子流形类似。它们之间有一个精确的关系:勒让德子流形在切触流形的辛化中的提升是一个拉格朗日子流形。勒让德子流形的最简单的例子是在一个切触三维流形中的勒让德纽结。不等价的勒让德纽结可能作为光滑纽结是等价的。

勒让德子流形是很刚性的对象;在一些情况下,子流形为了成为勒让德子流形而必须解开纽结。辛场论提供勒称为切触同调的勒让德子流形的不变量,它们有时可以用于区分拓扑等价的勒让德子流形。

若α是一个给定切触结构的切触形式,Reeb向量场R可以定义维dα的核的唯一满足α(R)=1的元素。其动力学可以用于研究切触流形的结构甚或用诸如辛场论和嵌入切触同调这类的Floer同调来研究流形本身。

切触几何的根源出现于克里斯蒂安·惠更斯、Barrow和牛顿的著作中。切触变换的理论(也即保持一个切触结构的变换)是索甫斯·李发展的,其目的是双重的,包括研究微分方程(例如勒让德变换)和表述射影对偶性中常见的'空间元素的变换'。

切触几何入门:

切触三维流形和勒让德纽结:

切触几何的历史信息:

相关

  • 福乐智慧《福乐智慧》(维吾尔文:.mw-parser-output .font-uig{font-family:"UKIJ Tuz","UKIJ Nasq","UKIJ Basma","UKIJ_Mac Basma","UKIJ Zilwa","UKIJ Esliye","UKIJ Tuz Basma","UK
  • 蓝丝黛尔石蓝丝黛尔石(Lonsdaleite)也译做郎士德碳,又因晶体结构及特性称作六方金刚石(hexagonal diamond)、六方碳。蓝丝黛尔石是一种六方晶系的金刚石,属于碳同素异形体的一种构形,咸信为流
  • 离子键离子键又被称为盐键,是化学键的一种,通过两个或多个原子或化学基团失去或获得电子而成为离子后形成。带相反电荷的原子或基团之间存在静电吸引力,两个带相反电荷的原子或基团靠
  • 地动仪候风地动仪是中国古代发明欲侦测地震的仪器,也是世界最早的地震仪,但现已失传。据传当年的候风地动仪毁于东汉战火。现在展览的各种候风地动仪,是由各国考古学家,根据古书中的描
  • 埃及金字塔坐标:29°58′31.58″N 31°07′56.32″E / 29.9754389°N 31.1323111°E / 29.9754389; 31.1323111埃及金字塔相传是古埃及法老(国王)的陵墓,但是考古学家从没有在金字塔中找到
  • 切尔克斯民族清洗切尔克斯民族清洗,是19世纪后期高加索战争后俄罗斯帝国对黑海西北岸切尔卡斯亚地区的土著切尔克斯人进行驱逐的事件。驱逐是在1864年战争结束前开始,1867年完成。这次驱逐涉及
  • 吉林将军吉林将军(满语:ᡤᡳᡵᡳᠨ  ᡳᠵᡳᠶᠠᠩᡤᡳᠶᡡᠨ,穆麟德:girin i jiyanggiyūn),全称镇守吉林等处地方将军,为清朝从一品武职。最早在顺治十年(1653年),朝廷始置宁古塔昂邦章京二
  • 1918年俄语正写法改革1917年至1918年的俄语正写法改革(Орфографическая реформа 1917—1918 годов)是发生在十月革命前后的俄语改革运动。这场运动修改了一些原有的正
  • 2013年孟加拉国萨瓦区大楼倒塌事故2013年孟加拉国萨瓦区大楼倒塌事故(英文:2013 Savar building collapse),是指2013年4月24日发生于孟加拉国达卡县萨瓦乡的一栋8层大楼倒塌巨灾,经过19天连日搜索,最终在2013年5月1
  • 童祥熊童祥熊(1844年-?),浙江宁波府鄞县(今浙江省宁波市)人,清朝政治人物、进士出身。出身于银台第童氏,山东按察使童槐之孙,历史学家童书业之祖。同治九年,乡试中举;光绪九年,登进士,改庶吉士。