切触几何

✍ dations ◷ 2025-08-14 10:43:36 #微分几何,流形上的结构,辛拓扑

数学上,切触几何(英语:Contact geometry)是研究流形上的超平面的几何。根据弗洛比尼斯定理,这个(大致来讲)可以通过叶状结构的不成立来识别。作为它的姐妹,辛几何属于偶数维的世界,而切触几何是奇数维的对应几何。

切触几何和辛几何一样在物理学中有广泛的应用,例如,几何光学、经典力学、热力学、几何量子化、可积系统、以及诸如控制论这样的应用数学。它也可以用于证明有趣的事情,例如‘你总是可以平泊你的汽车,只要空间足够大’。切触几何有很多低维拓扑中的应用;一个这种相关性的表现就是每个三维流形都有一个切触结构。

一个 α在2+1维流形上就是一个(局部)1-流形,具有属性

一个 ξ在一个流形上就是一个切触形式α的核,也就是,一个完全不可积超平面场。大致来讲,这表示你无法在一个开集上找到和ξ相切的一片超曲面。

从定义可以导出α限制到ξ上时是非退化的。这表示ξ是一个该流形上的辛丛。因为辛空间是偶数维的,切触流形必须是奇数维的。

作为基本例子,考虑3,使用一下坐标

1-形式

在一点的切除平面ξ

由下列向量张成

(画一幅图像)。实际上很容易将这个例子推广到任意。根据达布定理,一个流形上的每个切触结构局部看起来就是这个例子。

任何-维流形的余切丛 本身是一个流形(维数为2),并且自然地支持一个恰当辛结构ω = λ。(这个1-形式λ有时称为)。在流形上取一个黎曼度量。这允许我们考虑每个余切平面中的单位球。刘维尔形式限制到单位余切丛是一个切触结构。向量场 (唯一地)由λ()=1和λ对于所有该度量的测地流生成的向量场成立。

另一方面,可以通过考虑来构造一个切触流形。采用坐标(),这个流形有一个切触结构

最后这个例子表明如何从辛流形得到切触流形。同样可以从切触流形构造一个辛流形,也是通过和的直积:若α是一个切触形式,在流形上,则

是一个上的辛流形,其中表示在-方向的变量。

切触流形最有意思的子空间是它的勒让德子流形。在(2n+1)-维流形上的切触超平面场的不可积性意味着没有2n-维子流形可以将它作为它的切丛,局部的都不行。但是,通常可以找到一个n-维(嵌入或者浸入)子流形,其切空间位于切触场内。勒让德子流形和辛流形的拉格朗日子流形类似。它们之间有一个精确的关系:勒让德子流形在切触流形的辛化中的提升是一个拉格朗日子流形。勒让德子流形的最简单的例子是在一个切触三维流形中的勒让德纽结。不等价的勒让德纽结可能作为光滑纽结是等价的。

勒让德子流形是很刚性的对象;在一些情况下,子流形为了成为勒让德子流形而必须解开纽结。辛场论提供勒称为切触同调的勒让德子流形的不变量,它们有时可以用于区分拓扑等价的勒让德子流形。

若α是一个给定切触结构的切触形式,Reeb向量场R可以定义维dα的核的唯一满足α(R)=1的元素。其动力学可以用于研究切触流形的结构甚或用诸如辛场论和嵌入切触同调这类的Floer同调来研究流形本身。

切触几何的根源出现于克里斯蒂安·惠更斯、Barrow和牛顿的著作中。切触变换的理论(也即保持一个切触结构的变换)是索甫斯·李发展的,其目的是双重的,包括研究微分方程(例如勒让德变换)和表述射影对偶性中常见的'空间元素的变换'。

切触几何入门:

切触三维流形和勒让德纽结:

切触几何的历史信息:

相关

  • 兹卡热兹卡热(英语:Zika fever),又称作兹卡病毒感染症、寨卡热,是一种由兹卡病毒所引发的疾病 。大部分被感染的个案并无明显症状,但若有症状出现,则与登革热的症状相似 。兹卡热的病人可
  • 第12名这是按照各国国内生产总值(GDP)排序的列表。页面上提供的美元估算的国内生产总值,都根据购买力平价(PPP)的计算产生。因各机构统计模型不同,所以得出的数据与排名也略有差异。当比
  • 圣母颂巴赫与古诺的《圣母颂》是一首流行的圣母颂。其最早于1853年以Méditation sur le Premier Prélude de Piano de S. Bach的名字出版。这首曲子中包含了法国浪漫主义作曲家
  • 璧是中国古代用于祭祀的玉质环状物,凡半径是空半径的三倍的环状玉器称为璧。《尔雅》云:“肉倍好谓之璧,好倍肉谓之瑗,肉好若一谓之环。”,所谓肉是指边,好是指孔。实际上这一比例
  • 天球北极天极是地球的自转轴(地轴)(英语:earth axis),向天球延伸后,在无穷远处与天球交会的两个假想点。夜空中的星星,看起来是从头顶上由东向西移动,使人产生天球也在从东向西自转的感觉,这
  • 番荔枝科番荔枝科(学名:Annonaceae)在生物分类学上是被子植物木兰目下的一科。约有129属,2120种,是木兰目中最大的科。有的果实可食,有的可材用,有些为观赏植物。大多分布在热带地区,少数分
  • 二硫化锡二硫化锡是一种无机化合物,俗称“金粉”,常用作金色的涂料。二硫化锡可由锡和硫在碘的存在下直接化合得到,反应需要加热:另一种方法则是将硫化氢通入锡(IV)盐或锡(IV)酸盐溶液,沉
  • 格雷格·温特格雷戈里·保罗·“格雷格”·温特爵士(英语:Sir Gregory Paul "Greg" Winter,1951年4月14日-),英国生物化学家,治疗性单克隆抗体的先驱。他发明了“拟人化”(1986年)和全拟人化的噬
  • 寄生火山寄生火山是在一个大规模火山爆发的活动中,其中一支小型喷发活动所堆积成的袖珍型火山。例如:台湾台北市的纱帽山就是在七星山喷发时,在七星山火山锥体山腰侧边发展出的一支小型
  • 沃尔夫冈·阿尔滕堡沃尔夫冈·阿尔滕堡(生于1928年6月24日)是一名德国退休将领,曾任德国联邦国防军总监(英语:Inspector General of the Bundeswehr)(1983年-1986年)和北约军事委员会主席(英语:Chairman