切触几何

✍ dations ◷ 2024-12-22 19:56:08 #微分几何,流形上的结构,辛拓扑

数学上,切触几何(英语:Contact geometry)是研究流形上的超平面的几何。根据弗洛比尼斯定理,这个(大致来讲)可以通过叶状结构的不成立来识别。作为它的姐妹,辛几何属于偶数维的世界,而切触几何是奇数维的对应几何。

切触几何和辛几何一样在物理学中有广泛的应用,例如,几何光学、经典力学、热力学、几何量子化、可积系统、以及诸如控制论这样的应用数学。它也可以用于证明有趣的事情,例如‘你总是可以平泊你的汽车,只要空间足够大’。切触几何有很多低维拓扑中的应用;一个这种相关性的表现就是每个三维流形都有一个切触结构。

一个 α在2+1维流形上就是一个(局部)1-流形,具有属性

一个 ξ在一个流形上就是一个切触形式α的核,也就是,一个完全不可积超平面场。大致来讲,这表示你无法在一个开集上找到和ξ相切的一片超曲面。

从定义可以导出α限制到ξ上时是非退化的。这表示ξ是一个该流形上的辛丛。因为辛空间是偶数维的,切触流形必须是奇数维的。

作为基本例子,考虑3,使用一下坐标

1-形式

在一点的切除平面ξ

由下列向量张成

(画一幅图像)。实际上很容易将这个例子推广到任意。根据达布定理,一个流形上的每个切触结构局部看起来就是这个例子。

任何-维流形的余切丛 本身是一个流形(维数为2),并且自然地支持一个恰当辛结构ω = λ。(这个1-形式λ有时称为)。在流形上取一个黎曼度量。这允许我们考虑每个余切平面中的单位球。刘维尔形式限制到单位余切丛是一个切触结构。向量场 (唯一地)由λ()=1和λ对于所有该度量的测地流生成的向量场成立。

另一方面,可以通过考虑来构造一个切触流形。采用坐标(),这个流形有一个切触结构

最后这个例子表明如何从辛流形得到切触流形。同样可以从切触流形构造一个辛流形,也是通过和的直积:若α是一个切触形式,在流形上,则

是一个上的辛流形,其中表示在-方向的变量。

切触流形最有意思的子空间是它的勒让德子流形。在(2n+1)-维流形上的切触超平面场的不可积性意味着没有2n-维子流形可以将它作为它的切丛,局部的都不行。但是,通常可以找到一个n-维(嵌入或者浸入)子流形,其切空间位于切触场内。勒让德子流形和辛流形的拉格朗日子流形类似。它们之间有一个精确的关系:勒让德子流形在切触流形的辛化中的提升是一个拉格朗日子流形。勒让德子流形的最简单的例子是在一个切触三维流形中的勒让德纽结。不等价的勒让德纽结可能作为光滑纽结是等价的。

勒让德子流形是很刚性的对象;在一些情况下,子流形为了成为勒让德子流形而必须解开纽结。辛场论提供勒称为切触同调的勒让德子流形的不变量,它们有时可以用于区分拓扑等价的勒让德子流形。

若α是一个给定切触结构的切触形式,Reeb向量场R可以定义维dα的核的唯一满足α(R)=1的元素。其动力学可以用于研究切触流形的结构甚或用诸如辛场论和嵌入切触同调这类的Floer同调来研究流形本身。

切触几何的根源出现于克里斯蒂安·惠更斯、Barrow和牛顿的著作中。切触变换的理论(也即保持一个切触结构的变换)是索甫斯·李发展的,其目的是双重的,包括研究微分方程(例如勒让德变换)和表述射影对偶性中常见的'空间元素的变换'。

切触几何入门:

切触三维流形和勒让德纽结:

切触几何的历史信息:

相关

  • 国防部政治作战局国防部政治作战局为中华民国国防部的政治作战最高专责单位,负责中华民国国军政治作战工作之策划与督导。1920年代,中国国民党总理孙中山有感当时中国各地军阀分据,需要教育养成
  • ISO 3166-2国际标准化组织(ISO)的ISO 3166-2国际标准是ISO 3166的第二部分,定义约3700个国家或地区的主要行政区代码。每一行政区代码格式为“国家缩写-行政区代码”,国家缩写是ISO 3166-1
  • 辽圣宗乾亨:982年九月—983年六月 统和:983年六月-1012年闰十月 开泰:1012年十一月-1021年十一月辽圣宗耶律隆绪(972年1月16日-1031年6月25日),辽朝第六位皇帝(982年10月14日-1031年6月25日在
  • 高等教育部中华人民共和国教育部中华人民共和国高等教育部是中华人民共和国国务院曾设的一个主管高等教育的国务院组成部门,1966年7月23日高等教育部和教育部合并。
  • 约炮一夜情是指与未建立感情基础的人之间发生性行为(英文为“one-night stand”(ONS),原意是一晚的戏院表演)。炮友(英:Fuck buddy),或称为床伴(亦作床友,英:pillow friend),指非恋爱或婚姻关
  • 四季豆菜豆(学名:Phaseolus vulgaris)通称包括云藊豆、白肾豆、架豆、芸豆、刀豆、玉豆、去豆、四季豆等,一年生豆科植物,是餐桌上的常见蔬菜之一。油豆角(Phaseolus vulgaris var. chin
  • 杜诗杜诗(前1世纪?-38年),字君公,河内郡汲县人,东汉官员及发明家。年轻时有才能,在那里任官为功曹,以公平著称。更始政权时,被征辟为大司马府官员。建武元年(25年),一年内三次升迁至侍御史。
  • 卡拉维尔帆船卡拉维尔帆船(Caravel,又译卡拉维拉帆船,葡萄牙语为Caravela,或拉丁式大帆船)为一款盛行在15世纪的三桅帆船,当时的葡萄牙和西班牙航海家普遍采用它来进行海上探险。这款船是在当
  • 爱德华·纽曼 (昆虫学家)爱德华·纽曼(Edward Newman,1801年5月13日-1876年6月12日)是一位英格兰昆虫学家、植物学家和作家。出生于汉普斯特德的一个贵格会家庭。父母都是自然学家,在佩恩斯维克的一家寄
  • 安东·弗拉基米洛维奇·卡尔达雪夫安东·弗拉基米洛维奇·卡尔达雪夫(俄语:Антон Владимирович Карташёв;1875年-1960年),是俄罗斯教会史教授、记者。在1917年的短暂时间里,卡尔达雪夫是俄