切触几何

✍ dations ◷ 2025-04-04 11:08:37 #微分几何,流形上的结构,辛拓扑

数学上,切触几何(英语:Contact geometry)是研究流形上的超平面的几何。根据弗洛比尼斯定理,这个(大致来讲)可以通过叶状结构的不成立来识别。作为它的姐妹,辛几何属于偶数维的世界,而切触几何是奇数维的对应几何。

切触几何和辛几何一样在物理学中有广泛的应用,例如,几何光学、经典力学、热力学、几何量子化、可积系统、以及诸如控制论这样的应用数学。它也可以用于证明有趣的事情,例如‘你总是可以平泊你的汽车,只要空间足够大’。切触几何有很多低维拓扑中的应用;一个这种相关性的表现就是每个三维流形都有一个切触结构。

一个 α在2+1维流形上就是一个(局部)1-流形,具有属性

一个 ξ在一个流形上就是一个切触形式α的核,也就是,一个完全不可积超平面场。大致来讲,这表示你无法在一个开集上找到和ξ相切的一片超曲面。

从定义可以导出α限制到ξ上时是非退化的。这表示ξ是一个该流形上的辛丛。因为辛空间是偶数维的,切触流形必须是奇数维的。

作为基本例子,考虑3,使用一下坐标

1-形式

在一点的切除平面ξ

由下列向量张成

(画一幅图像)。实际上很容易将这个例子推广到任意。根据达布定理,一个流形上的每个切触结构局部看起来就是这个例子。

任何-维流形的余切丛 本身是一个流形(维数为2),并且自然地支持一个恰当辛结构ω = λ。(这个1-形式λ有时称为)。在流形上取一个黎曼度量。这允许我们考虑每个余切平面中的单位球。刘维尔形式限制到单位余切丛是一个切触结构。向量场 (唯一地)由λ()=1和λ对于所有该度量的测地流生成的向量场成立。

另一方面,可以通过考虑来构造一个切触流形。采用坐标(),这个流形有一个切触结构

最后这个例子表明如何从辛流形得到切触流形。同样可以从切触流形构造一个辛流形,也是通过和的直积:若α是一个切触形式,在流形上,则

是一个上的辛流形,其中表示在-方向的变量。

切触流形最有意思的子空间是它的勒让德子流形。在(2n+1)-维流形上的切触超平面场的不可积性意味着没有2n-维子流形可以将它作为它的切丛,局部的都不行。但是,通常可以找到一个n-维(嵌入或者浸入)子流形,其切空间位于切触场内。勒让德子流形和辛流形的拉格朗日子流形类似。它们之间有一个精确的关系:勒让德子流形在切触流形的辛化中的提升是一个拉格朗日子流形。勒让德子流形的最简单的例子是在一个切触三维流形中的勒让德纽结。不等价的勒让德纽结可能作为光滑纽结是等价的。

勒让德子流形是很刚性的对象;在一些情况下,子流形为了成为勒让德子流形而必须解开纽结。辛场论提供勒称为切触同调的勒让德子流形的不变量,它们有时可以用于区分拓扑等价的勒让德子流形。

若α是一个给定切触结构的切触形式,Reeb向量场R可以定义维dα的核的唯一满足α(R)=1的元素。其动力学可以用于研究切触流形的结构甚或用诸如辛场论和嵌入切触同调这类的Floer同调来研究流形本身。

切触几何的根源出现于克里斯蒂安·惠更斯、Barrow和牛顿的著作中。切触变换的理论(也即保持一个切触结构的变换)是索甫斯·李发展的,其目的是双重的,包括研究微分方程(例如勒让德变换)和表述射影对偶性中常见的'空间元素的变换'。

切触几何入门:

切触三维流形和勒让德纽结:

切触几何的历史信息:

相关

  • 2006年东南亚霾害2006年东南亚霾害为印尼苏门答腊多达300处的森林大火随季风飘散,并影响马来西亚、新加坡等邻近东南亚国家环境污染灾害,事件在2006年9月中旬开始为传媒报道,10月初转趋严重。而
  • 扩张新字体陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧  书法 ‧ 飞白书笔画 ‧ 
  • 命理算命,或称命理学,是一种利用个人资讯,例如脸与手的纹路,出生八字、姓名笔划等配合术数来预测一个人的性格、能力、未来发展或判断命运吉凶福祸等的行为。算命很早就传播至东亚其
  • 聚乙烯醇聚乙烯醇(PVA)是一种用途广泛的水溶性高分子聚合物,其性能介于塑料和橡胶之间。聚乙烯醇是一种固体,可呈白色粉末状、片状或絮状。玻璃转化温度60~85°C。聚乙烯醇含有许多醇基,具
  • 并吞吞并(annexation)在政治上是指一国将另一国的部分或全部领土完全置入自己主权统治下的状况。与主权未完全移交的占领、保护国及租界不同。通常情况下,吞并都是一方强制胁迫另一
  • ONE PIECE 珍兽岛之乔巴王国《ONE PIECE 珍兽岛之乔巴王国》是于2002年上映的第3部《ONE PIECE》电影版。草帽海贼团在航行途中,捡到一张王冠岛的地图,这是一座珍兽栖息的岛屿,他们打听到王冠岛上的“黄金
  • 俄罗斯苏维埃联邦社会主义共和国部长会议俄罗斯苏维埃联邦社会主义共和国部长会议(俄语:Совет Министров РСФСР)是1946年3月15日—1991年12月25日俄罗斯苏维埃联邦社会主义共和国最高行政机构,它受
  • BNBN可以指:
  • 赫伯特·肯尼斯·艾里·肖赫伯特·肯尼斯·艾里·肖(英语:Herbert Kenneth Airy Shaw)(1902年-1985年),英国植物学家。艾里·肖出生与萨福克郡伍德布里奇,在剑桥大学就学,在伦敦皇家植物园工作,是亚洲热带植物
  • 尼尔·斯洛恩尼尔·詹姆斯·亚历山大·斯洛恩(英语:Neil James Alexander Sloane,1939年10月10日-),美国数学家,1967年从康乃尔大学取得博士学位,1968年加入贝尔实验室,1998年成为了AT&T人员。他