瓦尼尔函数

✍ dations ◷ 2025-11-22 08:59:33 #计算物理学,凝聚体物理学

瓦尼尔函数(英语:Wannier function,或沃尼埃函数),是固体物理学中的一个正交函数的完备集,由格里高利·瓦尼尔(英语:Gregory Wannier)提出。瓦尼尔函数在晶系中对应着局域化分子轨道。

晶体中不同晶位的瓦尼尔函数所具有的正交性,使得对特定区域中的电子态进行展开时可以构造出便于计算的基组。瓦尼尔函数的应用极其广泛,例如对电子结合能的分析,在对激子以及里德伯物质(英语:Rydberg matter)的分析中也有其特定的应用。

诚然,正如局域化分子轨道(英语:localized molecular orbitals),瓦尼尔函数也有许多选取的方式,但最原始的,最简单的,且最常见的定义如下:

选定晶体中的某单一能带,将其布洛赫态标记为

其中 u k ( r ) {\displaystyle u_{\mathbf {k} }(\mathbf {r} )} 的周期性和晶体的相同。于是瓦尼尔函数就被定义为

在此定义的基础上,瓦尼尔函数被证明具有以下的性质:

定义布洛赫态 ψ k ( r ) {\displaystyle \psi _{\mathbf {k} }(\mathbf {r} )} 为某特定哈密顿算符的本征函数,包含一个“总体的”相位。若对 ψ k ( r ) {\displaystyle \psi _{\mathbf {k} }(\mathbf {r} )} 乘上相位 e i θ ( k ) {\displaystyle e^{i\theta (\mathbf {k} )}} ,对于任意(实)函数 θ ( k ) {\displaystyle \theta (\mathbf {k} )} ,总可以得到另一组等价满足此特定哈密顿算符的波函数。相比原先的波函数,乘上此相位对布洛赫态的性质不产生影响,但其对应的瓦尼尔函数会因此发生改变。

借助上述性质,通过人为选定布洛赫态的相位,可构造出一组最能简化计算的瓦尼尔函数。在实践中,这样的瓦尼尔函数常常是极大局域化的(maximally-localized),意思是瓦尼尔函数 ϕ R {\displaystyle \phi _{\mathbf {R} }} 被局限于点 R 周围;当远离位置 R 时,函数值迅速趋向于零。对于一维的情况,Kohn证明了总是存在唯一的选择可满足上述性质(基于特定的对称性)。对于多维(二维及以上),此方法可用于任何可对其使用分离变量法的势;但对于一般的高维情况,还需要进一步的研究。

最近的研究提出可用Pipek-Mezey(英语:Localized molecular orbitals#Pipek-Mezey)形式的局域化方案构造瓦尼尔函数。对比于极大局域化的瓦尼尔函数(即Foster-Boys(英语:Localized molecular orbitals#Foster-Boys)方案在晶系中的应用),Pipek-Mezey函数中没有σ轨道和π轨道的混合。

最近的研究将瓦尼尔函数应用到描述晶体中的极化现象中,例如铁电性。电极化的现代理论解释是由Raffaele Resta和David Vanderbilt提出的,参见Berghold,和Nakhmanson所发表的文章,以及Vanderbilt的介绍。固体中每一单位晶胞的极化强度可被定义为瓦尼尔电荷密度的电偶极矩:

其中的求和符号是对所有占据能带的求和, W n ( r ) {\displaystyle W_{n}(\mathbf {r} )} 指的是对于能带 n 局域于晶胞中的瓦尼尔函数。在连续的物理过程中,极化强度的变化即为极化的时间导数,可用布洛赫占有态的贝里相位确切地阐述。

相关

  • 破伤风梭状芽胞杆菌破伤风梭菌(学名:Clostridium tetani)是一种梭菌属的杆状专性厌氧菌,外观类似网球拍和鸡腿,是破伤风的病原体。医学导航:病菌细菌(分类)gr+f/gr+a(t)/gr-p(c/gr-o药物(J1p、w、n、m、疫苗)
  • 日尔曼人日耳曼人(拉丁语:Germani,德语:Germanen)是一些语言、文化和习俗相近的民族(部落社会)的总称。这些民族从公元前2千年到4世纪生活在欧洲北部和中部。在五世纪时的民族大迁徙使日耳
  • 姆班扎刚果姆班扎刚果(M'banza-Kongo),旧名为圣萨尔瓦多(São Salvador),是安哥拉西北部的城市,也是扎伊尔省的首府,毗邻刚果民主共和国,是刚果王国的古都,海拔高度408米,市内有机场设施,2008年人
  • 蒙特利尔加拿大人蒙特利尔加拿大人队(英语:Montreal Canadiens,法语:Canadiens de Montréal)是位于加拿大蒙特利尔的国家冰球联盟队伍,隶属于东部联盟大西洋分区。蒙特利尔加拿大人队成立于1909年
  • 阿尔伯塔·布洛克里艾伯特·罗摩洛·布洛克里(英语:Albert Romolo Broccoli,1909年4月5日-1996年6月27日),知名电影制作人。出生于美国纽约市。1962年与另一位制片人哈利·萨斯门开始号召团队制作风
  • 慧可法融牛头宗|弘忍东山宗 – 神秀北宗禅|惠能南宗禅 – 北荷泽宗|南洪州宗|南石头宗|保唐宗惠能系曹溪南宗 – 慧可(487年-593年),又名惠可、僧可,俗名姬光,号神光,虎牢人(河南省荥阳县),被
  • 伯克姆斯特德坐标:51°46′N 0°34′W / 51.76°N 0.56°W / 51.76; -0.56伯克姆斯特德(英语:Berkhamsted,发音:)是一座位于英国赫特福德郡西部的城市。这座城市的拼写方式曾经发生过多种变化,
  • 伊万·法尔斯伊万·法尔斯(Iwan Fals),原名维佳万·里斯但多(Virgiawan Listanto),1961年9月3日出生于雅加达 。是印尼知名的歌手,擅长民谣、摇滚、乡村以及流行音乐。他的歌曲创作有如快照一
  • 米歇莲·贝尔纳迪尼米歇莲·贝尔纳迪尼(法语:Micheline Bernardini,1927年-)曾是巴黎大赌场(英语:Casino de Paris)的脱衣舞女郎,在1946年7月5日答应成为法国工程师路易斯·雷德(英语:Louis Réard)设计二
  • 草榴社区t66y.com草榴社区是一个繁体中文网络色情论坛,创建于2006年11月。社区在2007年4月正式获取固定域名及地址,论坛服务器架设于美国科罗拉多州。目前该论坛具会员数超过20万。由