瓦尼尔函数

✍ dations ◷ 2025-05-10 19:43:57 #计算物理学,凝聚体物理学

瓦尼尔函数(英语:Wannier function,或沃尼埃函数),是固体物理学中的一个正交函数的完备集,由格里高利·瓦尼尔(英语:Gregory Wannier)提出。瓦尼尔函数在晶系中对应着局域化分子轨道。

晶体中不同晶位的瓦尼尔函数所具有的正交性,使得对特定区域中的电子态进行展开时可以构造出便于计算的基组。瓦尼尔函数的应用极其广泛,例如对电子结合能的分析,在对激子以及里德伯物质(英语:Rydberg matter)的分析中也有其特定的应用。

诚然,正如局域化分子轨道(英语:localized molecular orbitals),瓦尼尔函数也有许多选取的方式,但最原始的,最简单的,且最常见的定义如下:

选定晶体中的某单一能带,将其布洛赫态标记为

其中 u k ( r ) {\displaystyle u_{\mathbf {k} }(\mathbf {r} )} 的周期性和晶体的相同。于是瓦尼尔函数就被定义为

在此定义的基础上,瓦尼尔函数被证明具有以下的性质:

定义布洛赫态 ψ k ( r ) {\displaystyle \psi _{\mathbf {k} }(\mathbf {r} )} 为某特定哈密顿算符的本征函数,包含一个“总体的”相位。若对 ψ k ( r ) {\displaystyle \psi _{\mathbf {k} }(\mathbf {r} )} 乘上相位 e i θ ( k ) {\displaystyle e^{i\theta (\mathbf {k} )}} ,对于任意(实)函数 θ ( k ) {\displaystyle \theta (\mathbf {k} )} ,总可以得到另一组等价满足此特定哈密顿算符的波函数。相比原先的波函数,乘上此相位对布洛赫态的性质不产生影响,但其对应的瓦尼尔函数会因此发生改变。

借助上述性质,通过人为选定布洛赫态的相位,可构造出一组最能简化计算的瓦尼尔函数。在实践中,这样的瓦尼尔函数常常是极大局域化的(maximally-localized),意思是瓦尼尔函数 ϕ R {\displaystyle \phi _{\mathbf {R} }} 被局限于点 R 周围;当远离位置 R 时,函数值迅速趋向于零。对于一维的情况,Kohn证明了总是存在唯一的选择可满足上述性质(基于特定的对称性)。对于多维(二维及以上),此方法可用于任何可对其使用分离变量法的势;但对于一般的高维情况,还需要进一步的研究。

最近的研究提出可用Pipek-Mezey(英语:Localized molecular orbitals#Pipek-Mezey)形式的局域化方案构造瓦尼尔函数。对比于极大局域化的瓦尼尔函数(即Foster-Boys(英语:Localized molecular orbitals#Foster-Boys)方案在晶系中的应用),Pipek-Mezey函数中没有σ轨道和π轨道的混合。

最近的研究将瓦尼尔函数应用到描述晶体中的极化现象中,例如铁电性。电极化的现代理论解释是由Raffaele Resta和David Vanderbilt提出的,参见Berghold,和Nakhmanson所发表的文章,以及Vanderbilt的介绍。固体中每一单位晶胞的极化强度可被定义为瓦尼尔电荷密度的电偶极矩:

其中的求和符号是对所有占据能带的求和, W n ( r ) {\displaystyle W_{n}(\mathbf {r} )} 指的是对于能带 n 局域于晶胞中的瓦尼尔函数。在连续的物理过程中,极化强度的变化即为极化的时间导数,可用布洛赫占有态的贝里相位确切地阐述。

相关

  • 废水废水即受外物污染,主要是人为污染(英语:Human impact on the environment)的水。都市的设计用复合(英语:Combined sewer)排污系统输送废水往污水处理厂作进一步处理。经处理的废水
  • 石经石经是中国古代朝廷刻在石碑上的儒家经典,作为经文的标准。传抄的经文与石经相比较,即可知正误。刻在石头上的佛经有时也称为石经。东汉熹平四年至光和六年(175~183)刻《熹平石经
  • 周又元周又元(1938年7月30日-),生于上海,籍贯江苏南京,中国天体物理学家,中国科学技术大学和北京大学教授。1960年毕业于北京大学物理系。2001年当选为中国科学院院士。编号120730号小行
  • 超核超核就是含有超子的原子核,在1952年从暴露在宇宙线中的核乳胶里发现,同超子一样,超核很不稳定,会发生弱作用衰变。
  • 日本电影另见华语电影(两岸四地、新马)日本电影(日语:日本映画),在日本又称“邦画”(邦画,相当于中文的“国产片”或“国片”),已经有超过一百年以上的历史,是世界上历史最悠久且规模最庞大的
  • 仓鸮仓鸮(学名:Tyto alba)是分布最广的猫头鹰种类,也是所有鸟类中分布最广的之一,属于鸮形目中两科之一的草鸮科。它广布于世界各地,除了极地、荒漠、喜马拉雅山脉以北、印度尼西亚的
  • 香严寺香严寺,又名“长寿寺”、“香严长寿寺”、“显通禅寺”,位于中国河南省南阳市淅川县仓房镇西北部的白崖山群中,东临龙山,西接虎山,北依后岭,南拱面山,整个地形若莲花状,香严寺恰居中
  • 保罗·亨雷保罗·亨雷(Paul Henreid)是一名出身于奥匈帝国后来移居到美国的演员,他最出名的角色之一是在1943年的《北非谍影》中饰演英格丽·褒曼的丈夫,以及在1942年的《扬帆 (电影)(英语:N
  • 火影忍者游戏列表本列表列出《火影忍者》曾经推出过的游戏作品。 以《火影忍者》为题材的集换式卡片游戏。制造商也在各地举办活动。卡片有忍者卡片、术卡片、作战卡片、委托人卡片这4种类构
  • 马丁·费宁马丁·费宁(捷克语:Martin Fenin,1987年4月16日海布),捷克足球运动员,现效力于德国足球甲级联赛法兰克福足球俱乐部。