宇宙速度

✍ dations ◷ 2025-05-17 08:14:56 #天体力学,宇宙,速度

宇宙速度(英语:cosmic velocity),是指物体从地球出发,要脱离天体重力场的四个较有代表性的初始速度的统称。计算宇宙速度的基本公式如下:

航天器按其任务的不同,需要达到这四个宇宙速度的其中一个。例如人类第一个发射成功的星际探测器月球1号就需要达到第二宇宙速度,才能摆脱地球重力。而旅行者2号则需要达到第三宇宙速度,才能离开太阳系。

宇宙速度的概念也可应用于在其他天体发射航天器的情况。例如计算火星的环绕速度和逃逸速度,只需要把公式中的M,R,g换成火星的质量、半径、表面重力加速度即可。

逃逸速度是指一物体的动能等于该物体的重力势能的大小时的该物体的速率。逃逸速度一般描述为摆脱一重力场的引力束缚飞离那重力场所需的最低速率。对于“第一宇宙速度”和“第二宇宙速度”来说,“逃逸速度”这一用语可以认为是用词不当,因为它实际上是速率,而不是速度,亦即是说,它表示该物体必须运动得多快,却与运动方向无关,除了不是移向那重力场。更术语地说,逃逸速度是标量,而非向量。

逃逸速度的公式如下:

其中的 v e {\displaystyle v_{e}} 是重心逃逸速度、 G {\displaystyle G} 是万有引力常数, M {\displaystyle M} 是摆脱对象的质量, r {\displaystyle r} 是摆脱对象质心与逃逸物位置的距离, g {\displaystyle g} 是在该位置的重力加速度,而 μ {\displaystyle {\mu }} 则是标准重力参数。

在某一特定高度上的逃逸速度是同一高度上公转速度的 2 {\displaystyle {\sqrt {2}}} 倍。这对应着一个事实,即物体的势能是其动能的负2倍,例如在太阳上的势能和动能总和必须至少是零,才能达到逃逸速度。物体要达到绕地球飞行作圆周运动的速度被称为第一宇宙速度,而地球的逃逸速度则被称为第二宇宙速度。

逃逸速度的公式在加入常数后,会变成下列公式:

第一宇宙速度(first cosmic velocity),又称为环绕速度,是指在地球上发射的物体绕地球飞行作圆周运动所需的最小初始速度。要作圆周运动,必须始终有一个力作用在航天器上。其大小等于该航天器运行线速度的平方乘以其质量再除以公转半径,即 F = m v 2 R {\displaystyle F={\frac {mv^{2}}{R}}} ,其中 v 2 R {\displaystyle {\frac {v^{2}}{R}}} 是物体作圆周运动的向心加速度。在这里,正好可以利用地球的引力,在合适的轨道半径和速度下,地球对物体的引力,正好等于物体作圆周运动的向心力。第一宇宙速度的计算公式是:

或者:

由于地球表面存在稠密的大气层,航天器不可能贴近地球表面作圆周运动,必须在150公里的飞行高度上才能作圆周运动。在此高度的环绕速度为7.8公里/秒。

第二宇宙速度(second cosmic velocity),亦即地球的“脱离速度”或者“逃逸速度”,是指在地球上发射的物体摆脱地球引力束缚,飞离地球所需的最小初始速度。将无穷远处的物体的势能记为0,则距离地心为 r {\displaystyle r} 的地方,势能为 G M m r {\displaystyle -{\frac {GMm}{r}}} ,那么在地表的待发射的物体势能为 G M m R {\displaystyle -{\frac {GMm}{R}}} 。若要脱离地球的引力圈(即逃离地球),相当于要给该物体一定的动能来抵消它在地球表面的重力势能 G M m R {\displaystyle -{\frac {GMm}{R}}} ,恰好完全抵消时,即是逃离地球所需最小的速度(如下式)。

此外,也可以从能量守恒的角度来解释上式:物体恰好逃离地球时速度为0,逃离地球后最终它会到达离地球无限远处,因此有上式的动能和势能之和为0。换句话说,假设太空船的飞行没有阻力,那么只要它在初始时刻达到第二宇宙速度,那么就能保证它能够逃离地球并最终到达离地球无限远处,在初始时刻之后并不需要继续提供能量。

然而,地球表面有稠密的大气层,太空船飞行有阻力,并且难以达到这样高的初始速度起飞。实际上,太空船是先离开大气层,再加速完成脱离的(例如先抵达近地轨道,再在该轨道加速)。在这高度下,太空船的脱离速度较小,约为10.9公里/秒。实际上太空船发射中的飞行速度远比计算值要低得多,太空船尾部的喷射器持续地给予向上的推力分力,而这个力只要大于地球对太空船所施加的吸引力,即Δ>0,太空船就能脱离(或者说远离)地球的引力场。因此亦有人认为,只要向上分力持续大于太空船重量,便可以相较微小许多的初速脱离地球的引力场,然而所花时间的加长,使得这在实际情形中并不占优势。

第三宇宙速度(third cosmic velocity),是指在地球上发射的物体摆脱太阳引力束缚,飞出太阳系所需的最小初始速度。本来,在地球轨道上,要脱离太阳引力所需的初始速度为42.1公里/秒,但地球绕太阳公转时令地面所有物体已具有29.8公里/秒的初始速度,故此若沿地球公转方向发射,只需在脱离地球引力以外额外再加上12.3公里/秒的速度。即物体所需的总动能为:

由此得知所需速度为

第四宇宙速度(fourth cosmic velocity),是指在地球上发射的物体摆脱银河系引力束缚,飞出银河系所需的最小初始速度。但由于人们尚未知道银河系的准确大小与质量,因此只能粗略估算,其数值在525公里/秒以上。而实际上,仍然没有航天器能够达到这个速度。

因为地球拥有大气层,所以在地表上想达到地球的逃逸速度,即11.2 km/s(40,320 km/h),必须额外要考虑气动加热(英语:aerodynamic heating)和大气阻力的问题。因此,太空船是以逃逸轨道的方式离开地球。它们会先到达近地轨道(160–2,000 km),然后加速至接近地球的逃逸速度:约10.9 km/s。尽管这里仍然有速度变化,但因为其本身的速度已达8 km/s(28,800 km/h),所以其速度变化已被大大地减低了。

相关

  • RTA肾小管性酸中毒(英语:Renal tubular acidosis、英语:RTA)涉及在体内酸的积累酸中毒(acidosis)、起于肾脏未能适当地酸化尿液而造成的医学疾病。当血液通过肾脏的过滤,滤液穿过
  • 咆哮的二十年代咆哮的二十年代(英语:Roaring Twenties,有时为Roarin’ Twenties)是指在1920年代期间发生的西方世界和西方文化的术语。这是一个持续经济繁荣的时期,在美国和西欧具有独特的文化
  • 亚美尼亚德拉姆亚美尼亚德拉姆(亚美尼亚语:Դրամ;符号:;代码:AMD),亚美尼亚的货币单位。德拉姆的辅币单位是卢马(亚美尼亚语:լումա,英语:luma),1德拉姆可被分为100卢马。“德拉姆”的含义为“钱
  • 霜冻霜是水蒸气(也就是气态的水)在温度很低时,一种凝华现象,跟雪很类似。严寒的冬天清晨,户外植物上通常会结霜,这是因为夜间植物散热的慢、地表的温度又特别低、水蒸气散发不快,还聚集
  • 镀膜镀膜是一种将特定材料披覆于另一材料的方法,以达到特定的目的。例如提高硬度、耐酸碱、化学盾性、光穿透性等。常见应用为汽车镀膜。
  • 中国记协职工新闻学院中国记协职工新闻学院,是隶属中华全国新闻工作者协会(中国记协)的一所成人高等院校,提供新闻相关在职培训。
  • 马岛灵猫属马岛灵猫(学名:Fossa fossana),又名马尔加什灵猫、马岛麝猫或马岛缟狸,是马达加斯加特有的一种食蚁狸科动物。马岛灵猫以往与横带狸猫一同分类在灵猫科的 缟狸亚科中,及后再分类在
  • 后赵后赵(319年-351年)是十六国时期羯族首领石勒建立的政权。因石勒统治地区为战国时赵国故地,因此刘曜封其为赵王,立国即以此为号。为别于先建国的前赵,故史称“后赵”,又以其王室姓
  • 约翰·克尔 (物理学家)约翰·克尔(英语:John Kerr FRS 1824年12月17日-1907年8月15日)是一位苏格兰物理学家、电光学先驱。为纪念他的贡献,由他发现的物质在外电场作用下光学性质发生变化的效应被称为
  • 钠化合物钠化合物是含钠(Na)元素的化合物,其中大部分以盐的形式存在。钠盐于焰色反应中呈金黄色。钠可以和所有非金属元素化合,形成二元化合物。如在氧气中燃烧,生成过氧化钠;和氢气加热反