宇宙速度

✍ dations ◷ 2025-04-26 12:19:06 #天体力学,宇宙,速度

宇宙速度(英语:cosmic velocity),是指物体从地球出发,要脱离天体重力场的四个较有代表性的初始速度的统称。计算宇宙速度的基本公式如下:

航天器按其任务的不同,需要达到这四个宇宙速度的其中一个。例如人类第一个发射成功的星际探测器月球1号就需要达到第二宇宙速度,才能摆脱地球重力。而旅行者2号则需要达到第三宇宙速度,才能离开太阳系。

宇宙速度的概念也可应用于在其他天体发射航天器的情况。例如计算火星的环绕速度和逃逸速度,只需要把公式中的M,R,g换成火星的质量、半径、表面重力加速度即可。

逃逸速度是指一物体的动能等于该物体的重力势能的大小时的该物体的速率。逃逸速度一般描述为摆脱一重力场的引力束缚飞离那重力场所需的最低速率。对于“第一宇宙速度”和“第二宇宙速度”来说,“逃逸速度”这一用语可以认为是用词不当,因为它实际上是速率,而不是速度,亦即是说,它表示该物体必须运动得多快,却与运动方向无关,除了不是移向那重力场。更术语地说,逃逸速度是标量,而非向量。

逃逸速度的公式如下:

其中的 v e {\displaystyle v_{e}} 是重心逃逸速度、 G {\displaystyle G} 是万有引力常数, M {\displaystyle M} 是摆脱对象的质量, r {\displaystyle r} 是摆脱对象质心与逃逸物位置的距离, g {\displaystyle g} 是在该位置的重力加速度,而 μ {\displaystyle {\mu }} 则是标准重力参数。

在某一特定高度上的逃逸速度是同一高度上公转速度的 2 {\displaystyle {\sqrt {2}}} 倍。这对应着一个事实,即物体的势能是其动能的负2倍,例如在太阳上的势能和动能总和必须至少是零,才能达到逃逸速度。物体要达到绕地球飞行作圆周运动的速度被称为第一宇宙速度,而地球的逃逸速度则被称为第二宇宙速度。

逃逸速度的公式在加入常数后,会变成下列公式:

第一宇宙速度(first cosmic velocity),又称为环绕速度,是指在地球上发射的物体绕地球飞行作圆周运动所需的最小初始速度。要作圆周运动,必须始终有一个力作用在航天器上。其大小等于该航天器运行线速度的平方乘以其质量再除以公转半径,即 F = m v 2 R {\displaystyle F={\frac {mv^{2}}{R}}} ,其中 v 2 R {\displaystyle {\frac {v^{2}}{R}}} 是物体作圆周运动的向心加速度。在这里,正好可以利用地球的引力,在合适的轨道半径和速度下,地球对物体的引力,正好等于物体作圆周运动的向心力。第一宇宙速度的计算公式是:

或者:

由于地球表面存在稠密的大气层,航天器不可能贴近地球表面作圆周运动,必须在150公里的飞行高度上才能作圆周运动。在此高度的环绕速度为7.8公里/秒。

第二宇宙速度(second cosmic velocity),亦即地球的“脱离速度”或者“逃逸速度”,是指在地球上发射的物体摆脱地球引力束缚,飞离地球所需的最小初始速度。将无穷远处的物体的势能记为0,则距离地心为 r {\displaystyle r} 的地方,势能为 G M m r {\displaystyle -{\frac {GMm}{r}}} ,那么在地表的待发射的物体势能为 G M m R {\displaystyle -{\frac {GMm}{R}}} 。若要脱离地球的引力圈(即逃离地球),相当于要给该物体一定的动能来抵消它在地球表面的重力势能 G M m R {\displaystyle -{\frac {GMm}{R}}} ,恰好完全抵消时,即是逃离地球所需最小的速度(如下式)。

此外,也可以从能量守恒的角度来解释上式:物体恰好逃离地球时速度为0,逃离地球后最终它会到达离地球无限远处,因此有上式的动能和势能之和为0。换句话说,假设太空船的飞行没有阻力,那么只要它在初始时刻达到第二宇宙速度,那么就能保证它能够逃离地球并最终到达离地球无限远处,在初始时刻之后并不需要继续提供能量。

然而,地球表面有稠密的大气层,太空船飞行有阻力,并且难以达到这样高的初始速度起飞。实际上,太空船是先离开大气层,再加速完成脱离的(例如先抵达近地轨道,再在该轨道加速)。在这高度下,太空船的脱离速度较小,约为10.9公里/秒。实际上太空船发射中的飞行速度远比计算值要低得多,太空船尾部的喷射器持续地给予向上的推力分力,而这个力只要大于地球对太空船所施加的吸引力,即Δ>0,太空船就能脱离(或者说远离)地球的引力场。因此亦有人认为,只要向上分力持续大于太空船重量,便可以相较微小许多的初速脱离地球的引力场,然而所花时间的加长,使得这在实际情形中并不占优势。

第三宇宙速度(third cosmic velocity),是指在地球上发射的物体摆脱太阳引力束缚,飞出太阳系所需的最小初始速度。本来,在地球轨道上,要脱离太阳引力所需的初始速度为42.1公里/秒,但地球绕太阳公转时令地面所有物体已具有29.8公里/秒的初始速度,故此若沿地球公转方向发射,只需在脱离地球引力以外额外再加上12.3公里/秒的速度。即物体所需的总动能为:

由此得知所需速度为

第四宇宙速度(fourth cosmic velocity),是指在地球上发射的物体摆脱银河系引力束缚,飞出银河系所需的最小初始速度。但由于人们尚未知道银河系的准确大小与质量,因此只能粗略估算,其数值在525公里/秒以上。而实际上,仍然没有航天器能够达到这个速度。

因为地球拥有大气层,所以在地表上想达到地球的逃逸速度,即11.2 km/s(40,320 km/h),必须额外要考虑气动加热(英语:aerodynamic heating)和大气阻力的问题。因此,太空船是以逃逸轨道的方式离开地球。它们会先到达近地轨道(160–2,000 km),然后加速至接近地球的逃逸速度:约10.9 km/s。尽管这里仍然有速度变化,但因为其本身的速度已达8 km/s(28,800 km/h),所以其速度变化已被大大地减低了。

相关

  • 地图学small/small地图学(英语:Cartography;希腊语:χάρτης ,即为英文的Mapmaking,chartis是地图,graphein是编写之意)是研究地图的理论、编制技术与应用方法的科学。传统的地图制作是利用纸和
  • 霍夫曼征在医学中,Hoffmann征指的是以德国生理学家Paul Hoffmann(英语:Paul Hoffmann (physiologist))(1884–1962)命名的一种远侧神经响应的表现。Hoffmann征(或Tinel征)是通过机械刺激受伤
  • 孙子算经《孙子算经》,中国南北朝数学著作,《算经十书》之一。孙子算经的确切成书年代不详。学者根据书中事物出现的时间,估计孙子算经成书于南北朝。全书共分三卷:详细的讨论了度量衡的
  • 莺歌陶瓷博物馆新北市立莺歌陶瓷博物馆位于台湾新北市莺歌区,于公元2000年11月26日正式开馆,是台湾第一座以陶瓷为主题的专业博物馆。致力于台湾陶瓷文化之调查、收藏、保存与维护工作,并提供
  • 大邱体育场大邱世界杯体育场是位于韩国大邱市的足球场。1997年7月,球场正式动工兴建;2001年5月完工,同年6月28日开放。成本为USD$2亿6千5百万。球场曾为K联赛球队FC大邱的主场,可以容纳65,
  • 雷维利亚希赫多群岛雷维利亚希赫多群岛(Revillagigedo Islands),墨西哥在太平洋中的一座群岛,位于距下加利福尼亚半岛南端西南450公里的大洋中,属科利马州管辖。该群岛由4座岛屿组成,各岛均为火山
  • XXIII宪法正文I ∙ II ∙ III ∙ IV ∙ V ∙ VI ∙ VII其它修正案 XI ∙ XII ∙ XIII ∙ XIV ∙ XV XVI ∙ XVII ∙ XVIII ∙ XIX ∙ XX XXI ∙ XXII ∙ XXIII ∙
  • 1965年改革1965年苏联经济改革,有时被称为柯西金改革(俄语:Косыгинская реформа) 或利别尔曼改革,是苏联经济的一系列有计划的变化。 这些改革的核心是引进 盈利能力 和
  • 纽约城市大学纽约市立大学(The City University of New York,缩写作 CUNY)是纽约市的公立大学系统的总称。它是美国最大的市立大学系统,包含有:11个四年制高等学院(Senior College)、7个两年
  • 盆腔器官脱垂盆腔器官脱垂指的是盆腔器官向下脱落的一种症状。发生在女子身上的又称女性生殖器脱垂,这通常是发生于妇科肿瘤治疗、产后或提举重物之后,此时由于盆底肌变弱、受损而无力支撑