宇宙速度

✍ dations ◷ 2025-01-31 14:16:04 #天体力学,宇宙,速度

宇宙速度(英语:cosmic velocity),是指物体从地球出发,要脱离天体重力场的四个较有代表性的初始速度的统称。计算宇宙速度的基本公式如下:

航天器按其任务的不同,需要达到这四个宇宙速度的其中一个。例如人类第一个发射成功的星际探测器月球1号就需要达到第二宇宙速度,才能摆脱地球重力。而旅行者2号则需要达到第三宇宙速度,才能离开太阳系。

宇宙速度的概念也可应用于在其他天体发射航天器的情况。例如计算火星的环绕速度和逃逸速度,只需要把公式中的M,R,g换成火星的质量、半径、表面重力加速度即可。

逃逸速度是指一物体的动能等于该物体的重力势能的大小时的该物体的速率。逃逸速度一般描述为摆脱一重力场的引力束缚飞离那重力场所需的最低速率。对于“第一宇宙速度”和“第二宇宙速度”来说,“逃逸速度”这一用语可以认为是用词不当,因为它实际上是速率,而不是速度,亦即是说,它表示该物体必须运动得多快,却与运动方向无关,除了不是移向那重力场。更术语地说,逃逸速度是标量,而非向量。

逃逸速度的公式如下:

其中的 v e {\displaystyle v_{e}} 是重心逃逸速度、 G {\displaystyle G} 是万有引力常数, M {\displaystyle M} 是摆脱对象的质量, r {\displaystyle r} 是摆脱对象质心与逃逸物位置的距离, g {\displaystyle g} 是在该位置的重力加速度,而 μ {\displaystyle {\mu }} 则是标准重力参数。

在某一特定高度上的逃逸速度是同一高度上公转速度的 2 {\displaystyle {\sqrt {2}}} 倍。这对应着一个事实,即物体的势能是其动能的负2倍,例如在太阳上的势能和动能总和必须至少是零,才能达到逃逸速度。物体要达到绕地球飞行作圆周运动的速度被称为第一宇宙速度,而地球的逃逸速度则被称为第二宇宙速度。

逃逸速度的公式在加入常数后,会变成下列公式:

第一宇宙速度(first cosmic velocity),又称为环绕速度,是指在地球上发射的物体绕地球飞行作圆周运动所需的最小初始速度。要作圆周运动,必须始终有一个力作用在航天器上。其大小等于该航天器运行线速度的平方乘以其质量再除以公转半径,即 F = m v 2 R {\displaystyle F={\frac {mv^{2}}{R}}} ,其中 v 2 R {\displaystyle {\frac {v^{2}}{R}}} 是物体作圆周运动的向心加速度。在这里,正好可以利用地球的引力,在合适的轨道半径和速度下,地球对物体的引力,正好等于物体作圆周运动的向心力。第一宇宙速度的计算公式是:

或者:

由于地球表面存在稠密的大气层,航天器不可能贴近地球表面作圆周运动,必须在150公里的飞行高度上才能作圆周运动。在此高度的环绕速度为7.8公里/秒。

第二宇宙速度(second cosmic velocity),亦即地球的“脱离速度”或者“逃逸速度”,是指在地球上发射的物体摆脱地球引力束缚,飞离地球所需的最小初始速度。将无穷远处的物体的势能记为0,则距离地心为 r {\displaystyle r} 的地方,势能为 G M m r {\displaystyle -{\frac {GMm}{r}}} ,那么在地表的待发射的物体势能为 G M m R {\displaystyle -{\frac {GMm}{R}}} 。若要脱离地球的引力圈(即逃离地球),相当于要给该物体一定的动能来抵消它在地球表面的重力势能 G M m R {\displaystyle -{\frac {GMm}{R}}} ,恰好完全抵消时,即是逃离地球所需最小的速度(如下式)。

此外,也可以从能量守恒的角度来解释上式:物体恰好逃离地球时速度为0,逃离地球后最终它会到达离地球无限远处,因此有上式的动能和势能之和为0。换句话说,假设太空船的飞行没有阻力,那么只要它在初始时刻达到第二宇宙速度,那么就能保证它能够逃离地球并最终到达离地球无限远处,在初始时刻之后并不需要继续提供能量。

然而,地球表面有稠密的大气层,太空船飞行有阻力,并且难以达到这样高的初始速度起飞。实际上,太空船是先离开大气层,再加速完成脱离的(例如先抵达近地轨道,再在该轨道加速)。在这高度下,太空船的脱离速度较小,约为10.9公里/秒。实际上太空船发射中的飞行速度远比计算值要低得多,太空船尾部的喷射器持续地给予向上的推力分力,而这个力只要大于地球对太空船所施加的吸引力,即Δ>0,太空船就能脱离(或者说远离)地球的引力场。因此亦有人认为,只要向上分力持续大于太空船重量,便可以相较微小许多的初速脱离地球的引力场,然而所花时间的加长,使得这在实际情形中并不占优势。

第三宇宙速度(third cosmic velocity),是指在地球上发射的物体摆脱太阳引力束缚,飞出太阳系所需的最小初始速度。本来,在地球轨道上,要脱离太阳引力所需的初始速度为42.1公里/秒,但地球绕太阳公转时令地面所有物体已具有29.8公里/秒的初始速度,故此若沿地球公转方向发射,只需在脱离地球引力以外额外再加上12.3公里/秒的速度。即物体所需的总动能为:

由此得知所需速度为

第四宇宙速度(fourth cosmic velocity),是指在地球上发射的物体摆脱银河系引力束缚,飞出银河系所需的最小初始速度。但由于人们尚未知道银河系的准确大小与质量,因此只能粗略估算,其数值在525公里/秒以上。而实际上,仍然没有航天器能够达到这个速度。

因为地球拥有大气层,所以在地表上想达到地球的逃逸速度,即11.2 km/s(40,320 km/h),必须额外要考虑气动加热(英语:aerodynamic heating)和大气阻力的问题。因此,太空船是以逃逸轨道的方式离开地球。它们会先到达近地轨道(160–2,000 km),然后加速至接近地球的逃逸速度:约10.9 km/s。尽管这里仍然有速度变化,但因为其本身的速度已达8 km/s(28,800 km/h),所以其速度变化已被大大地减低了。

相关

  • 美属维尔京群岛美属维尔京群岛(英语:Virgin Islands of the United States,常写作United States Virgin Islands,缩写为USVI)是美国在加勒比海的一个建制非合并属地,位于波多黎各以东,处于小安的
  • 伍斯特县伍斯特县(英语:Worcester County)是美国马萨诸塞州中部的一个县,北邻新罕布什尔州,东南邻罗得岛州,西南邻康涅狄格州。面积4,090平方公里。根据美国2000年人口普查,共有人口750,963
  • 大马士革大马士革(阿拉伯语:دمشق‎.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium","
  • 狮子Felis leo Linnaeus, 1758狮(学名:Panthera leo),又称狮子(古称狻猊),被人称为万兽之王。狮是一种生存在非洲和亚洲的大型猫科动物,豹属之中最著名的一种,现存中是和老虎并列的两大
  • 子宫颈内口子宫颈内口(或者称为子宫颈或宫颈内口的内部孔)是内部狭窄的子宫结构,可在子宫表面的中间部分观察得到。
  • 亚麻油酸亚油酸(Linoleic acid,LA),又称亚麻油酸,IUPAC名:(9Z,12Z)-9,12-十八碳二烯酸,速记法名称为 18:2, n-6,是一种含有两个双键的ω-6脂肪酸。存在于动植物油中,红花油中约含75%,向日葵籽油
  • 食毛目见内文虱毛目(学名:Phthiraptera)是原虱目和食毛目的合称,通称虱或虱子(英语:louse)。全世界约有3,000种。虱寄生于人体、其他哺乳动物(除了单孔目和蝙蝠外)和鸟类的身上。以人类为宿
  • 库尔伙伴合唱团库尔伙伴合唱团(Kool & the Gang)是一个美国爵士、蓝调、灵魂乐、疯克和迪斯科音乐组合,最初于1964年在新泽西州泽西市成立,名为Jazziacs。在他们的音乐生涯中,经历了几个阶段,从
  • 州议会大厦以下是美国各州的州议会大厦列表。AL 亚拉巴马州 AK 阿拉斯加州 AZ 亚利桑那州 AR 阿肯色州 CA 加利福尼亚州 CO 科罗拉多州 CT 康涅狄格州 DE 特拉华州 FL 佛罗里达州 GA
  • 抚吉高速公路抚州-吉安高速公路(江西省级高速公路网编号S46,简称抚吉高速)是江西省地方横线高速公路。全长179.188公里,东起临川,途经崇仁、宜黄、乐安、吉水,西至吉州区。2005年9月抚吉高速抚