德拉姆上同调

✍ dations ◷ 2025-02-24 04:28:17 #代数拓扑,同调论,微分几何,微分形式

数学上,德拉姆上同调(de Rham cohomology)是同时属于代数拓扑和微分拓扑的工具。它能够以一种特别适合计算和用具体的上同调类的方式表达关于光滑流形的基本拓扑信息。它是基于有特定属性的微分形式的存在性的上同调理论。它以不同的确定的意义对偶于奇异同调,以及亚历山大-斯潘尼尔上同调。

任何光滑流形上的光滑微分-形式在加法之下形成一个交换群(实际上也是一个实向量空间,称为

外导数 给了以下的映射

下面是一个基本的关系

这本质上是因为二阶导数的对称性。所以-形式和外导数形成一个上链复形(cochain complex),称为:

微分几何术语中,是其它微分形式的外导数的形式称为恰当形式(exact form),而外导数为0的形式称为闭形式(参看闭形式和恰当形式); 2 = 0这个关系说明

其逆命题却一般来说不成立;闭形式未必恰当。de Rham上同调的想法就是给一个流形上不同类型的闭形式分类。分类这样进行:称 Ω k ( M ) {\displaystyle \Omega ^{k}(M)} 阶 de Rham上同调群为

等价类的集合,也就是, Ω k ( M ) {\displaystyle \Omega ^{k}(M)}

其中等号表示同构。这是因为M上导数为零的 C {\displaystyle C^{\infty }} 是一个紧黎曼流形,则每个dR() 中的等价类包含恰好一个调和形式。也就是说,给定闭形式的等价类的任一代表 ω可以写为

其中 α 是一个形式,而γ 是调和的: Δγ=0.

注意一个紧黎曼流形上的调和函数是一个常数。这样,这个特殊的代表元素可以视为流形上所有上同调等价的形式中的一个极值(极小值)。例如,在2-圆环上,一个常1-形式可以视为在一个形式,它所有的"毛"都整齐的梳到一个方向(而且所有的毛都一样长)。这个情况下,这表示2维环的第一贝蒂数是2。更一般的,在一个n维环n上,可以考虑-形式的各种不同的梳理。有取种不同的梳理用来建立 dR(n)的一个基; 因此n-环的第Betti数就是取。

更精确的讲,对于一个微分流形,可以装备一个附加的黎曼度量。这样拉普拉斯算子 Δ可以定义为

其中是外导数 而 δ 是余微分。拉普拉斯算子是齐次的(在分次中)线性 微分算子作用在微分形式的外代数上:我们可以分别来看它在每个阶分量上的作用。

若为紧且可定向,拉普拉斯算子在k-形式的空间上的核的维度和阶德拉姆上同调群的维度相同(根据霍奇理论:拉普拉斯算子从闭形式的每个上同调类中挑出唯一的一个形式。特别的,所有上的调和-形式同构于(;R). 每个这种空间的维度都有限,并有阶贝蒂数给出。

令 δ 为余微分(codifferential),我们称形式ω 是上闭的(co-closed)如果δω=0 而称其为上恰当(co-exact)。若对于某个形式 α,有ω=δα 。Hodge分解表明任意k-形式 ω 可以分解为3个L2 分量:

其中 γ 为调和的: Δ γ = 0. 这是因为恰当和上恰当形式互相正交;他们的正交补就是同时恰当和上恰当的形式:也就是,调和形式。这里,正交性由 Ω k ( M ) {\displaystyle \Omega ^{k}(M)} ,群dR()同构于具有奇异上同调群

的实向量空间。楔积赋予这些群的直和一个环结构。定理的进一步结果是这两个上同调环(作为分次环)是同构的。

一般化的斯托克斯定理是德拉姆上同调和链的同调群的对偶性的表达。

相关

  • 让-巴蒂斯特·拉马克让-巴蒂斯特·皮埃尔·安托万·德·莫奈,德拉马克骑士(Jean-Baptiste Pierre Antoine de Monet, Chevalier de Lamarck,1744年8月1日-1829年12月18日),法国博物学家,他最先提出生物
  • 克果纳杰氏症克果纳杰氏症是一遗传性胆血红素代谢疾病,因肝脏葡萄糖醛酸转移酵素(英语:Glucuronosyltransferase)缺乏引起高胆红素血症。如未能在婴儿期予以治疗,则会发展为核黄疸。其发生率
  • 瓦斯科·达伽马瓦斯科·达伽马(葡萄牙语:Vasco da Gama,1460年-1524年12月24日)是葡萄牙探险家,初代维迪格拉伯爵,中文译名多简称“达伽马”或“达迦马”,他是历史上第一位从欧洲航海到印度的人(149
  • 伦敦行政区划大伦敦(英语:Greater London),位于英国英格兰东南部,是英格兰下属的一级行政区划之一,范围大致包含英国首都伦敦与其周围的卫星城镇所组成的都会区。行政上,该区域是在1965年时设置
  • 国学 (学府)国学指国家学府,即古代中国和周边地区如朝鲜、越南、日本、琉球等国的中央学府,为官学体系的最高学府。为古之大学。虞之上庠,夏之东序,殷之瞽宗,周之辟雍,汉后之太学,隋后之国子监
  • 美国国家森林美国国家森林是美国的一种保护区,属于联邦土地的管辖范围。美国国家森林由巨大的森林、树林组成,以联邦政府的名义为全体美国人所共有,由美国农业部下属的美国国家森林局管辖。
  • 罗伯特·沃森-瓦特罗伯特·沃森-瓦特爵士(英语:Sir Robert Alexander Watson-Watt,1892年4月13日-1973年12月5日),英国苏格兰物理学家,雷达的发明者。他是蒸汽机发明者詹姆斯·瓦特的后代。二次大战
  • 周道治周道治,原名立杓,字季文,号朗垣,顺天府宛平县(今属北京市)人。清朝官员,同进士出身。周道治为道光十七年(1837年)丁酉科举人,道光二十七年(1847年)张之万榜三甲进士。选翰林院庶吉士。道
  • 高等教育统计局高等教育统计局(英语:Higher Education Statistics Agency,缩写为 HESA)是英国负责收集、分析及传播高等教育信息的官方机构。成立于1993年。高等教育统计局成立了高等教育统计
  • 海法大学海法大学(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Taamey