一元二次方程

✍ dations ◷ 2025-04-25 09:39:25 #一元二次方程
一元二次方程是只含有一个未知数,并且未知数的最高次数是二次的多项式方程。例如, x 2 − 3 x + 2 = 2 {displaystyle x^{2}-3x+2=2} , ( 3 − 2 i ) x 2 + 23 − 6 i π x − sin ⁡ 2 = 0 {displaystyle left(3-2iright)x^{2}+{sqrt{23-6i}}x-sin 2=0} , t 2 − 3 = 0 {displaystyle t^{2}-3=0} 等都是一元二次方程。一元二次方程的一般形式是:古巴比伦留下的陶片显示,在大约公元前2000年(2000 BC)古巴比伦的数学家就能解一元二次方程了。在大约公元前480年,中国人已经使用配方法求得了二次方程的正根。公元前300年左右,欧几里得提出了一种更抽象的几何方法求解二次方程。7世纪印度的婆罗摩笈多(Brahmagupta)是第一位懂得用使用代数方程,它同时容许有正负数的根。11世纪阿拉伯的花拉子密 独立地发展了一套公式以求方程的正数解。亚伯拉罕·巴希亚(亦以拉丁文名字萨瓦索达著称)在他的著作Liber embadorum中,首次将完整的一元二次方程解法传入欧洲。据说施里德哈勒是最早给出二次方程的普适解法的数学家之一。但这一点在他的时代存在着争议。这个求解规则是(引自婆什迦罗第二):将其转化为数学语言:解关于 x {displaystyle x} 的方程 a x 2 + b x = − c {displaystyle ax^{2}+bx=-c}在方程的两边同时乘以二次项未知数的系数的四倍,即 4 a {displaystyle 4a} ,得阿贝尔指出,任意一元二次方程都可以根据 a {displaystyle a} 、 b {displaystyle b} 、 c {displaystyle c} 三个系数,通过初等代数运算来求解。求得的解也被称为方程的根。一般来说,一元二次方程有两个解,答案需提供两个不同的数值,只要符合 a ≠ 0 {displaystyle aneq 0} 的原则就可以了。把一个一元二次方程变形成一般形式 a x 2 + b x + c = 0 {displaystyle ax^{2}+bx+c=0} 后,如果 a x 2 + b x + c = 0 {displaystyle ax^{2}+bx+c=0} 能够较简便地分解成两个一次因式的乘积,则一般用因式分解来解这个一元二次方程。将方程左边分解成两个一次因式的乘积后(一般可用十字相乘法),分别令每一个因式等于零,可以得到两个一元一次方程。解这两个一元一次方程,得到的两个解都是原方程的解。如果一元二次方程 a x 2 + b x + c = 0 {displaystyle ax^{2}+bx+c=0} 存在两个实根 x 1 , x 2 {displaystyle x_{1},x_{2}} ,那么它可以因式分解为 a ( x − x 1 ) ( x − x 2 ) = 0 {displaystyle a(x-x_{1})(x-x_{2})=0} 。例如,解一元二次方程 x 2 − 3 x + 2 = 0 {displaystyle x^{2}-3x+2=0} 时,可将原方程左边分解成对于 a x 2 + b x + c = 0 ( a ≠ 0 ) {displaystyle ax^{2}+bx+c=0qquad left(aneq 0right)} ,它的根可以表示为:公式解可以由配方法得出。首先先将一元二次方程的一般形式 a x 2 + b x + c = 0 {displaystyle ax^{2}+bx+c=0} 除以 a {displaystyle a} ( a {displaystyle a} 在一元二次方程中不为零),将会得到当 2 x y = b a x {displaystyle 2xy={frac {b}{a}}x} 时得到公式解终于出现了:一元二次方程的求根公式在方程的系数为有理数、实数、复数或是任意数域中适用。一元二次方程中的判别式对于实系数一元二次方程 a x 2 + b x + c = 0 ( 0 ) {displaystyle ax^{2}+bx+c=0left(0right)} , Δ = b 2 − 4 a c {displaystyle Delta =b^{2}-4ac} 称作一元二次方程根的判别式。根据判别式,一元二次方程的根有三种可能的情况:即系数为非实数时的一元二次方程,将系数扩展到复数域内,此时要注意根的判别式不适用于非实系数一元二次方程。根据韦达定理可以找出一元二次方程的根与方程中系数的关系。一元二次方程 a x 2 + b x + c = 0 {displaystyle ax^{2}+bx+c=0} 的根的几何意义是二次函数 y = a x 2 + b x + c {displaystyle y=ax^{2}+bx+c} 的图像(为一条抛物线)与 x {displaystyle x} 轴交点的x坐标。另外一种解法是把一元二次方程 a x 2 + b x + c = 0 {displaystyle ax^{2}+bx+c=0} 化为 x 2 = − b a x − c a {displaystyle x^{2}=-{frac {b}{a}}x-{frac {c}{a}}} 的形式。则方程 a x 2 + b x + c = 0 {displaystyle ax^{2}+bx+c=0} 的根,就是函数 y = x 2 {displaystyle y=x^{2}} 和 y = − b a x − c a {displaystyle y=-{frac {b}{a}}x-{frac {c}{a}}} 交点的X坐标。通过作图,可以得到一元二次方程根的近似值。在使用计算机解一元二次方程时,跟人手工计算相似,大部分情况下也是根据下面的公式去解

相关

  • 牙医学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学牙医学(法语:Dentisterie; 英语:Dentistr
  • 肉毒杆菌素肉毒杆菌毒素(英文:BTX, Botulinum Toxin),也被称为肉毒毒素或肉毒杆菌素,是由肉毒杆菌于厌氧条件下生长时所产生的一类嗜神经性外毒素。肉毒杆菌毒素共有A、B、Cα、Cβ、D、E、
  • Tl4f14 5d10 6s2 6p12, 8, 18, 32, 18, 3蒸气压第一:589.4 kJ·mol−1 第二:1971 kJ·mol−1 第三:2878 kJ·mol主条目:铊的同位素铊(拼音:tā,注音:ㄊㄚ,粤拼:taa1;英语:thallium)是化
  • 哈雷迪哈雷迪犹太教(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Ta
  • 性唤起性刺激是能激起性兴奋、性冲动或性快感的感官刺激,可以是视觉的刺激,触觉上的刺激,或其他感官上的刺激。依据情况的不同,人会因各种因素感受到生理或心理上的性兴奋。性兴奋可能
  • 天体粒子粒子天体物理学(英语:Particle astrophysics)或天体粒子物理学(英语:Astroparticle physics),是粒子物理学的一个分支,研究基本粒子的天文学的起源及其与有关的天体物理学和宇宙学。
  • 玛丽·居里玛丽亚·斯克沃多夫斯卡-居里(波兰语:Maria Skłodowska-Curie,1867年11月7日-1934年7月4日),通常称为玛丽·居里(法语:Marie Curie)或居里夫人(Madame Curie),波兰裔法国籍物理学家、化
  • 赤道隆起赤道隆起(英语:Equatorial bulge)是指行星在赤道和在两极上测得的直径差,由行星在自转时产生的离心力造成,使星球形成一个扁球体而不是球体。
  • 葛粉葛粉,又称葛根粉,是由葛属植物的根部提取出来的淀粉,常用于甜点制作,尤其于日式和菓子。坊间也有人将葛粉加糖及热水搅匀,制成葛粉糖水。
  • 伪关系伪关系(英语:spurious relationship,又称为虚假关系),指在两个没有因果关系的事件,可能基于其他未见的干扰因素(英语:confounding factor;或称潜在变数,英语:lurking variable),显示出统