一元二次方程

✍ dations ◷ 2025-10-20 16:47:09 #一元二次方程
一元二次方程是只含有一个未知数,并且未知数的最高次数是二次的多项式方程。例如, x 2 − 3 x + 2 = 2 {displaystyle x^{2}-3x+2=2} , ( 3 − 2 i ) x 2 + 23 − 6 i π x − sin ⁡ 2 = 0 {displaystyle left(3-2iright)x^{2}+{sqrt{23-6i}}x-sin 2=0} , t 2 − 3 = 0 {displaystyle t^{2}-3=0} 等都是一元二次方程。一元二次方程的一般形式是:古巴比伦留下的陶片显示,在大约公元前2000年(2000 BC)古巴比伦的数学家就能解一元二次方程了。在大约公元前480年,中国人已经使用配方法求得了二次方程的正根。公元前300年左右,欧几里得提出了一种更抽象的几何方法求解二次方程。7世纪印度的婆罗摩笈多(Brahmagupta)是第一位懂得用使用代数方程,它同时容许有正负数的根。11世纪阿拉伯的花拉子密 独立地发展了一套公式以求方程的正数解。亚伯拉罕·巴希亚(亦以拉丁文名字萨瓦索达著称)在他的著作Liber embadorum中,首次将完整的一元二次方程解法传入欧洲。据说施里德哈勒是最早给出二次方程的普适解法的数学家之一。但这一点在他的时代存在着争议。这个求解规则是(引自婆什迦罗第二):将其转化为数学语言:解关于 x {displaystyle x} 的方程 a x 2 + b x = − c {displaystyle ax^{2}+bx=-c}在方程的两边同时乘以二次项未知数的系数的四倍,即 4 a {displaystyle 4a} ,得阿贝尔指出,任意一元二次方程都可以根据 a {displaystyle a} 、 b {displaystyle b} 、 c {displaystyle c} 三个系数,通过初等代数运算来求解。求得的解也被称为方程的根。一般来说,一元二次方程有两个解,答案需提供两个不同的数值,只要符合 a ≠ 0 {displaystyle aneq 0} 的原则就可以了。把一个一元二次方程变形成一般形式 a x 2 + b x + c = 0 {displaystyle ax^{2}+bx+c=0} 后,如果 a x 2 + b x + c = 0 {displaystyle ax^{2}+bx+c=0} 能够较简便地分解成两个一次因式的乘积,则一般用因式分解来解这个一元二次方程。将方程左边分解成两个一次因式的乘积后(一般可用十字相乘法),分别令每一个因式等于零,可以得到两个一元一次方程。解这两个一元一次方程,得到的两个解都是原方程的解。如果一元二次方程 a x 2 + b x + c = 0 {displaystyle ax^{2}+bx+c=0} 存在两个实根 x 1 , x 2 {displaystyle x_{1},x_{2}} ,那么它可以因式分解为 a ( x − x 1 ) ( x − x 2 ) = 0 {displaystyle a(x-x_{1})(x-x_{2})=0} 。例如,解一元二次方程 x 2 − 3 x + 2 = 0 {displaystyle x^{2}-3x+2=0} 时,可将原方程左边分解成对于 a x 2 + b x + c = 0 ( a ≠ 0 ) {displaystyle ax^{2}+bx+c=0qquad left(aneq 0right)} ,它的根可以表示为:公式解可以由配方法得出。首先先将一元二次方程的一般形式 a x 2 + b x + c = 0 {displaystyle ax^{2}+bx+c=0} 除以 a {displaystyle a} ( a {displaystyle a} 在一元二次方程中不为零),将会得到当 2 x y = b a x {displaystyle 2xy={frac {b}{a}}x} 时得到公式解终于出现了:一元二次方程的求根公式在方程的系数为有理数、实数、复数或是任意数域中适用。一元二次方程中的判别式对于实系数一元二次方程 a x 2 + b x + c = 0 ( 0 ) {displaystyle ax^{2}+bx+c=0left(0right)} , Δ = b 2 − 4 a c {displaystyle Delta =b^{2}-4ac} 称作一元二次方程根的判别式。根据判别式,一元二次方程的根有三种可能的情况:即系数为非实数时的一元二次方程,将系数扩展到复数域内,此时要注意根的判别式不适用于非实系数一元二次方程。根据韦达定理可以找出一元二次方程的根与方程中系数的关系。一元二次方程 a x 2 + b x + c = 0 {displaystyle ax^{2}+bx+c=0} 的根的几何意义是二次函数 y = a x 2 + b x + c {displaystyle y=ax^{2}+bx+c} 的图像(为一条抛物线)与 x {displaystyle x} 轴交点的x坐标。另外一种解法是把一元二次方程 a x 2 + b x + c = 0 {displaystyle ax^{2}+bx+c=0} 化为 x 2 = − b a x − c a {displaystyle x^{2}=-{frac {b}{a}}x-{frac {c}{a}}} 的形式。则方程 a x 2 + b x + c = 0 {displaystyle ax^{2}+bx+c=0} 的根,就是函数 y = x 2 {displaystyle y=x^{2}} 和 y = − b a x − c a {displaystyle y=-{frac {b}{a}}x-{frac {c}{a}}} 交点的X坐标。通过作图,可以得到一元二次方程根的近似值。在使用计算机解一元二次方程时,跟人手工计算相似,大部分情况下也是根据下面的公式去解

相关

  • Po6s2 4f14 5d10 6p42, 8, 18, 32, 18, 6蒸气压主条目:钋的同位素钋是化学元素,化学符号Po,原子序84,是一种稀有且具有高度放射性的银白色金属元素(有时归为类金属),对人类极为危险。
  • 果聚糖果聚糖是果糖分子的聚合物,存在于洋蓟、芦笋、四季豆、韭葱、洋葱、葱、菊薯、小麦等食物中。在动物饲料中,牧草也含有果聚糖,由此可以看出果聚糖可能是马科的饮食必需。果聚糖
  • 平衡点在数学中,平衡点是相对微分方程或差分方程的概念。对于微分方程若 f ( t ,
  • 舌头舌(舌头)是口腔底的肌肉,帮助咀嚼、吞咽、构音和感受味觉。舌能辨别酸、甜、苦、辣、咸、鲜味,舌表面的大部分粘膜上皮中含味蕾。因为舌是帮助发声的器官之一,在一些语言中,比如在
  • 三碘甲状腺素三碘甲状腺原氨酸(T3)是一种甲状腺激素,几乎对所有生理过程都产生影响,包括生长和发育(英语:Human development (biology)),代谢,体温,和心率。与甲状腺素(四碘甲腺原氨酸)类似,但生理作
  • 水杨酸钠水杨酸钠(化学式:C7H5NaO3或 NaC6H4(OH)CO2)是水杨酸的钠盐,可以通过苯酚和二氧化碳在较高的温度和压强下制取。历史上,水杨酸钠则是通过升华水杨酸与过量的碳酸氢钠发生反应,再用
  • 国际藻类、真菌、植物命名法规《国际藻类、真菌、植物命名法规》(英语:International Code of Nomenclature for algae, fungi, and plants;ICN)是一部关于植物命名的规则与建议,其中确立每一个分类单元(或分类
  • 格特鲁德·B·埃利恩格特鲁德·B·埃利恩(英语:Gertrude Belle Elion,1918年1月23日-1999年2月21日) ,是美国女性生化学家和药理学家。1988年,她与乔治·H·希钦斯和詹姆士·W·布拉克共同获颁诺贝尔
  • 第五共和国法兰西第五共和国(法语:Cinquième République / 5e République)是法国现行共和政体制度的政权,在1958年10月4日由夏尔·戴高乐主导的法国第五共和宪法施行后建立。相较于第四
  • 逆转录聚合酶链反应逆转录PCR,或者称逆转录PCR(reverse transcription-PCR, RT-PCR),是聚合酶链式反应(PCR)的一种广泛应用的变形。在RT-PCR中,一条RNA链被逆转录成为互补DNA,再以此为模板透过PCR