首页 >
一元二次方程
✍ dations ◷ 2025-08-01 01:34:44 #一元二次方程
一元二次方程是只含有一个未知数,并且未知数的最高次数是二次的多项式方程。例如,
x
2
−
3
x
+
2
=
2
{displaystyle x^{2}-3x+2=2}
,
(
3
−
2
i
)
x
2
+
23
−
6
i
π
x
−
sin
2
=
0
{displaystyle left(3-2iright)x^{2}+{sqrt{23-6i}}x-sin 2=0}
,
t
2
−
3
=
0
{displaystyle t^{2}-3=0}
等都是一元二次方程。一元二次方程的一般形式是:古巴比伦留下的陶片显示,在大约公元前2000年(2000 BC)古巴比伦的数学家就能解一元二次方程了。在大约公元前480年,中国人已经使用配方法求得了二次方程的正根。公元前300年左右,欧几里得提出了一种更抽象的几何方法求解二次方程。7世纪印度的婆罗摩笈多(Brahmagupta)是第一位懂得用使用代数方程,它同时容许有正负数的根。11世纪阿拉伯的花拉子密 独立地发展了一套公式以求方程的正数解。亚伯拉罕·巴希亚(亦以拉丁文名字萨瓦索达著称)在他的著作Liber embadorum中,首次将完整的一元二次方程解法传入欧洲。据说施里德哈勒是最早给出二次方程的普适解法的数学家之一。但这一点在他的时代存在着争议。这个求解规则是(引自婆什迦罗第二):将其转化为数学语言:解关于
x
{displaystyle x}
的方程
a
x
2
+
b
x
=
−
c
{displaystyle ax^{2}+bx=-c}在方程的两边同时乘以二次项未知数的系数的四倍,即
4
a
{displaystyle 4a}
,得阿贝尔指出,任意一元二次方程都可以根据
a
{displaystyle a}
、
b
{displaystyle b}
、
c
{displaystyle c}
三个系数,通过初等代数运算来求解。求得的解也被称为方程的根。一般来说,一元二次方程有两个解,答案需提供两个不同的数值,只要符合
a
≠
0
{displaystyle aneq 0}
的原则就可以了。把一个一元二次方程变形成一般形式
a
x
2
+
b
x
+
c
=
0
{displaystyle ax^{2}+bx+c=0}
后,如果
a
x
2
+
b
x
+
c
=
0
{displaystyle ax^{2}+bx+c=0}
能够较简便地分解成两个一次因式的乘积,则一般用因式分解来解这个一元二次方程。将方程左边分解成两个一次因式的乘积后(一般可用十字相乘法),分别令每一个因式等于零,可以得到两个一元一次方程。解这两个一元一次方程,得到的两个解都是原方程的解。如果一元二次方程
a
x
2
+
b
x
+
c
=
0
{displaystyle ax^{2}+bx+c=0}
存在两个实根
x
1
,
x
2
{displaystyle x_{1},x_{2}}
,那么它可以因式分解为
a
(
x
−
x
1
)
(
x
−
x
2
)
=
0
{displaystyle a(x-x_{1})(x-x_{2})=0}
。例如,解一元二次方程
x
2
−
3
x
+
2
=
0
{displaystyle x^{2}-3x+2=0}
时,可将原方程左边分解成对于
a
x
2
+
b
x
+
c
=
0
(
a
≠
0
)
{displaystyle ax^{2}+bx+c=0qquad left(aneq 0right)}
,它的根可以表示为:公式解可以由配方法得出。首先先将一元二次方程的一般形式
a
x
2
+
b
x
+
c
=
0
{displaystyle ax^{2}+bx+c=0}
除以
a
{displaystyle a}
(
a
{displaystyle a}
在一元二次方程中不为零),将会得到当
2
x
y
=
b
a
x
{displaystyle 2xy={frac {b}{a}}x}
时得到公式解终于出现了:一元二次方程的求根公式在方程的系数为有理数、实数、复数或是任意数域中适用。一元二次方程中的判别式对于实系数一元二次方程
a
x
2
+
b
x
+
c
=
0
(
0
)
{displaystyle ax^{2}+bx+c=0left(0right)}
,
Δ
=
b
2
−
4
a
c
{displaystyle Delta =b^{2}-4ac}
称作一元二次方程根的判别式。根据判别式,一元二次方程的根有三种可能的情况:即系数为非实数时的一元二次方程,将系数扩展到复数域内,此时要注意根的判别式不适用于非实系数一元二次方程。根据韦达定理可以找出一元二次方程的根与方程中系数的关系。一元二次方程
a
x
2
+
b
x
+
c
=
0
{displaystyle ax^{2}+bx+c=0}
的根的几何意义是二次函数
y
=
a
x
2
+
b
x
+
c
{displaystyle y=ax^{2}+bx+c}
的图像(为一条抛物线)与
x
{displaystyle x}
轴交点的x坐标。另外一种解法是把一元二次方程
a
x
2
+
b
x
+
c
=
0
{displaystyle ax^{2}+bx+c=0}
化为
x
2
=
−
b
a
x
−
c
a
{displaystyle x^{2}=-{frac {b}{a}}x-{frac {c}{a}}}
的形式。则方程
a
x
2
+
b
x
+
c
=
0
{displaystyle ax^{2}+bx+c=0}
的根,就是函数
y
=
x
2
{displaystyle y=x^{2}}
和
y
=
−
b
a
x
−
c
a
{displaystyle y=-{frac {b}{a}}x-{frac {c}{a}}}
交点的X坐标。通过作图,可以得到一元二次方程根的近似值。在使用计算机解一元二次方程时,跟人手工计算相似,大部分情况下也是根据下面的公式去解
相关
- BNF法国国家图书馆(法语:Bibliothèque nationale de France,BnF)是法国的国家图书馆,也是法国最重要的图书馆之一。它的前身是查理五世在1368年建立的国王图书馆,在路易十四治下取得
- 血浆血浆(英语:Blood Plasma)是血液的清液成分,血细胞悬浮于其中。人体含有2750-3300毫升血浆,约占血液总体积的55%。血浆的绝大部分是水(体积的90%),其中溶解的物质主要是血浆蛋白,还包
- 造成疾病致病真菌(英语:Pathogenic Fungi)是引起人类或其他生物产生真菌病的真菌。 已知大约300种真菌对人类具有致病性。虽然真菌是真核生物,但是许多致病真菌也是微生物。对人类致病的
- 阿尔基罗库斯卡尔基罗库斯(英语:Archilochus),(前680年-前645年)。古希腊最早的抒情诗人。与荷马齐名。他曾参与殖民萨索斯的相关活动,后于此阵亡。他因为女儿内奥布勒的出嫁一事与吕坎拜斯发生
- 化工化学工业是生产化学产品的工业。是一个多行业、多品种,为国民经济各部门和人民生活各方面服务的工业,是重工业的支柱。一般可分为无机化学工业、基本有机化学工业、高分子化学
- 意大利艺术意大利艺术对西方艺术影像非常深远。意大利艺术在伊特拉斯坎文明或罗马帝国时代主宰整个西方艺术几个世纪之久,文艺复兴运动也是意大利艺术重要的环节之一。意大利艺术在18世
- abbr class=abbr title=R40: 有限的证据显示本物质可能致癌R40/abbr警示性质标准词(英语:Risk Phrases,简写:R-phrases)是于《欧联指导标准67/548/EEC 附录III: 有关危险物品与其储备的特殊风险性质》里定义。该列表被集中并再出版于指导标准2001/
- 虞舜.mw-parser-output ruby>rt,.mw-parser-output ruby>rtc{font-feature-settings:"ruby"1}.mw-parser-output ruby.large{font-size:250%}.mw-parser-output ruby.larger{fon
- 810110 数学 120 信息科学与系统科学 130 力学 140 物理学 150 化学 160 天文学 170 地球科学 180 生物学210 农学 220 林学 230 畜牧、兽医科学 240 水产学310
- thesaurus索引典(英语:thesaurus),也称为叙词表或类语辞典,同义词辞典,是主题分析的一种实作方法。所谓主题分析是指辨识某作品之知识内涵,分析其特性,并使用某些文字、代号描述其主题。主题