首页 >
一元二次方程
✍ dations ◷ 2025-02-23 06:40:20 #一元二次方程
一元二次方程是只含有一个未知数,并且未知数的最高次数是二次的多项式方程。例如,
x
2
−
3
x
+
2
=
2
{displaystyle x^{2}-3x+2=2}
,
(
3
−
2
i
)
x
2
+
23
−
6
i
π
x
−
sin
2
=
0
{displaystyle left(3-2iright)x^{2}+{sqrt{23-6i}}x-sin 2=0}
,
t
2
−
3
=
0
{displaystyle t^{2}-3=0}
等都是一元二次方程。一元二次方程的一般形式是:古巴比伦留下的陶片显示,在大约公元前2000年(2000 BC)古巴比伦的数学家就能解一元二次方程了。在大约公元前480年,中国人已经使用配方法求得了二次方程的正根。公元前300年左右,欧几里得提出了一种更抽象的几何方法求解二次方程。7世纪印度的婆罗摩笈多(Brahmagupta)是第一位懂得用使用代数方程,它同时容许有正负数的根。11世纪阿拉伯的花拉子密 独立地发展了一套公式以求方程的正数解。亚伯拉罕·巴希亚(亦以拉丁文名字萨瓦索达著称)在他的著作Liber embadorum中,首次将完整的一元二次方程解法传入欧洲。据说施里德哈勒是最早给出二次方程的普适解法的数学家之一。但这一点在他的时代存在着争议。这个求解规则是(引自婆什迦罗第二):将其转化为数学语言:解关于
x
{displaystyle x}
的方程
a
x
2
+
b
x
=
−
c
{displaystyle ax^{2}+bx=-c}在方程的两边同时乘以二次项未知数的系数的四倍,即
4
a
{displaystyle 4a}
,得阿贝尔指出,任意一元二次方程都可以根据
a
{displaystyle a}
、
b
{displaystyle b}
、
c
{displaystyle c}
三个系数,通过初等代数运算来求解。求得的解也被称为方程的根。一般来说,一元二次方程有两个解,答案需提供两个不同的数值,只要符合
a
≠
0
{displaystyle aneq 0}
的原则就可以了。把一个一元二次方程变形成一般形式
a
x
2
+
b
x
+
c
=
0
{displaystyle ax^{2}+bx+c=0}
后,如果
a
x
2
+
b
x
+
c
=
0
{displaystyle ax^{2}+bx+c=0}
能够较简便地分解成两个一次因式的乘积,则一般用因式分解来解这个一元二次方程。将方程左边分解成两个一次因式的乘积后(一般可用十字相乘法),分别令每一个因式等于零,可以得到两个一元一次方程。解这两个一元一次方程,得到的两个解都是原方程的解。如果一元二次方程
a
x
2
+
b
x
+
c
=
0
{displaystyle ax^{2}+bx+c=0}
存在两个实根
x
1
,
x
2
{displaystyle x_{1},x_{2}}
,那么它可以因式分解为
a
(
x
−
x
1
)
(
x
−
x
2
)
=
0
{displaystyle a(x-x_{1})(x-x_{2})=0}
。例如,解一元二次方程
x
2
−
3
x
+
2
=
0
{displaystyle x^{2}-3x+2=0}
时,可将原方程左边分解成对于
a
x
2
+
b
x
+
c
=
0
(
a
≠
0
)
{displaystyle ax^{2}+bx+c=0qquad left(aneq 0right)}
,它的根可以表示为:公式解可以由配方法得出。首先先将一元二次方程的一般形式
a
x
2
+
b
x
+
c
=
0
{displaystyle ax^{2}+bx+c=0}
除以
a
{displaystyle a}
(
a
{displaystyle a}
在一元二次方程中不为零),将会得到当
2
x
y
=
b
a
x
{displaystyle 2xy={frac {b}{a}}x}
时得到公式解终于出现了:一元二次方程的求根公式在方程的系数为有理数、实数、复数或是任意数域中适用。一元二次方程中的判别式对于实系数一元二次方程
a
x
2
+
b
x
+
c
=
0
(
0
)
{displaystyle ax^{2}+bx+c=0left(0right)}
,
Δ
=
b
2
−
4
a
c
{displaystyle Delta =b^{2}-4ac}
称作一元二次方程根的判别式。根据判别式,一元二次方程的根有三种可能的情况:即系数为非实数时的一元二次方程,将系数扩展到复数域内,此时要注意根的判别式不适用于非实系数一元二次方程。根据韦达定理可以找出一元二次方程的根与方程中系数的关系。一元二次方程
a
x
2
+
b
x
+
c
=
0
{displaystyle ax^{2}+bx+c=0}
的根的几何意义是二次函数
y
=
a
x
2
+
b
x
+
c
{displaystyle y=ax^{2}+bx+c}
的图像(为一条抛物线)与
x
{displaystyle x}
轴交点的x坐标。另外一种解法是把一元二次方程
a
x
2
+
b
x
+
c
=
0
{displaystyle ax^{2}+bx+c=0}
化为
x
2
=
−
b
a
x
−
c
a
{displaystyle x^{2}=-{frac {b}{a}}x-{frac {c}{a}}}
的形式。则方程
a
x
2
+
b
x
+
c
=
0
{displaystyle ax^{2}+bx+c=0}
的根,就是函数
y
=
x
2
{displaystyle y=x^{2}}
和
y
=
−
b
a
x
−
c
a
{displaystyle y=-{frac {b}{a}}x-{frac {c}{a}}}
交点的X坐标。通过作图,可以得到一元二次方程根的近似值。在使用计算机解一元二次方程时,跟人手工计算相似,大部分情况下也是根据下面的公式去解
相关
- 健康人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学健康是指生物的功能性和代谢效率的水
- DNA序列核酸序列(英语:Nucleic acid sequence,亦称为核酸的一级结构)使用一串字母表示的真实的或者假设的携带基因信息的DNA分子的一级结构。每个字母代表一种核碱基,两个碱基形成一个碱
- 哈斯蒙尼哈斯蒙尼王朝(英语发音:/ˌhæzməˈniːən/ (audio); 希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL"
- 后缀后缀(英语:suffix),又称字尾或词尾,在词汇学的定义中表示一种后置于其他词素后的词缀。以英语为例:establish(动词)+ -ment(后缀)→establishment(名词):借由后缀-ment的使用,使原本的动词
- 千米千米亦称公里(法语:kilomètre → 英式英文:kilometre、美式英文:kilometer),是一种长度计量单位,等于一千米,是国际单位制之一,符号为km。根据定义,光在真空中每秒传播30万千米。在口
- 蓬皮杜中心蓬皮杜中心(法语:Centre Georges-Pompidou)全名为蓬皮杜国家艺术和文化中心(Centre national d'art et de culture Georges-Pompidou),是一栋座落于法国首都巴黎第四区的复合建筑,
- 欧莱雅欧莱雅集团(法语:L'Oréal S.A.),创办于1909年,是世界上最大的化妆品企业,也是财富全球500强企业之一。欧莱雅集团经营范围遍及150多个国家和地区,在全球拥有150个分公司、42家工厂
- 饱和溶液在一定温度下,在一定量的溶剂里加入某种溶质,当溶质不能继续再溶解时,所得到的溶液叫做饱和溶液(saturated solution)。仅凭人类的肉眼不能观察出溶液是否已达到饱和状态。通常情
- 链式反应链反应(Chain reaction)又称连锁反应,是指反应的产物或副产物又可作为其他反应的原料,从而使反应反复发生。在化学中,链反应通常指光、热、辐射或引发剂作用下,反应中交替产生活性
- 巴黎地铁巴黎地铁或巴黎地下铁(法语:Métro de Paris)是法国巴黎的地下轨道交通系统,于1900年起运行至今。目前巴黎地铁总长度220公里,居世界第十七位,年客流量达15.06亿(2010年),居世界第九