速率方程

✍ dations ◷ 2025-04-04 06:31:06 #速率方程
化学反应速率方程是利用反应物浓度或分压计算化学反应的反应速率的方程。对于一个化学反应 m A + n B → C {displaystyle mA+nBrightarrow C} ,化学反应速率方程(与复杂反应速率方程相比较)的一般形式写作:在这个方程中, [ X ] {displaystyle } 表示一种给定的反应物 X {displaystyle X} 的活度,单位通常为摩尔每升(mol/L),但在实际计算中有时也用浓度代替(若该反应物为气体,表示分压,单位为帕斯卡 (Pa)。 k {displaystyle k} 表示这一反应的速率常数,与温度、离子活度、光照、固体反应物的接触面积、反应活化能等因素有关,通常可通过阿累尼乌斯方程计算出来,也可通过实验测定。指数 x {displaystyle x} 、 y {displaystyle y} 为反应级数,取决于反应历程。在基元反应中,反应级数等于化学计量数。但在非基元反应中,反应级数与化学计量数不一定相等。复杂反应速率方程可能以更复杂的形式出现,包括含多项式的分母。上述速率方程的一般形式是速率方程的微分形式,它可以从反应机理导出,而且能明显表示出浓度对反应速率的影响,便于进行理论分析。将它积分便得到速率方程的积分形式,即反应物/产物浓度 [ X ] {displaystyle } 与时间 t {displaystyle t} 的函数关系式。(不适用于一级反应)(不适用于一级反应)(不适用于一级反应)表中, M {displaystyle M} 代表摩尔浓度(mol/L), t {displaystyle t} 代表时间, k {displaystyle k} 代表反应的速率常数。所说的“二级反应”和“ n {displaystyle n} 级反应”指的是纯级数反应,也就是反应速率只与一个反应物的二次方或   n {displaystyle n} 成正比。可逆反应(又称平衡反应、对行反应、对峙反应)指的是反应物与产物形成化学平衡的反应,其中正向和逆向反应同时进行,而且反应速率相等。它可以用下面的方程式来表示:k 1 {displaystyle k_{1}} 与 k − 1 {displaystyle k_{-1}} 又恰好能与反应的平衡常数 K {displaystyle K} 通过下列关系联系起来:下面讨论一个简单的单分子可逆一级反应:进行分离变数积分,可以得到:或者,将 x {displaystyle x} 定义为反应后某一时刻已经转化为 B {displaystyle B} 的 A {displaystyle A} 的浓度,则:为了求得反应的半衰期,令 [ A ] t = 1 2 [ A ] 0 {displaystyle _{t}={frac {1}{2}}_{0}} ,将其代入上面(1)式或(2)式,可以得到:可以看出,平衡反应中的半衰期与反应物的初始浓度无关。对行反应的例子有:连续反应(又称串联反应、连串反应)指的是如下类型的化学反应:对 ( 3 ) {displaystyle (3)} 式积分,得: [ A ] t = [ A ] 0 e − k 1 t … ( 6 ) {displaystyle _{t}=_{0}e^{-k_{1}t}qquad qquad ldots (6)}将 ( 6 ) {displaystyle (6)} 式代入 ( 4 ) {displaystyle (4)} 式,得: d [ B ] d t + k 2 [ B ] = k 1 [ A ] 0 e − k 1 t {displaystyle {frac {d}{dt}}+k_{2}=k_{1}_{0}e^{-k_{1}t}}对其进行积分:由于将 ( 6 ) {displaystyle (6)} 和 ( 7 ) {displaystyle (7)} 式代入,可得: [ C ] = [ A ] 0 k 2 − k 1 [ k 2 ( 1 − e − k 1 t ) − k 1 ( 1 − e − k 2 t ) ] = [ A ] 0 ( 1 + k 1 e − k 2 t − k 2 e − k 1 t k 2 − k 1 ) {displaystyle ={frac {_{0}}{k_{2}-k_{1}}}=_{0}(1+{frac {k_{1}e^{-k_{2}t}-k_{2}e^{-k_{1}t}}{k_{2}-k_{1}}})}这样, [ A ] {displaystyle } 、 [ B ] {displaystyle } 、 [ C ] {displaystyle } 三个浓度就都可以求出了。如果中间体 B {displaystyle B} 是目标产物,则 [ B ] {displaystyle } 达到最大值时(最佳时间)就必须终止反应。通过将 ( 7 ) {displaystyle (7)} 式对 t {displaystyle t} 取导数,令其为0,可以求出中间体 B {displaystyle B} 的最佳时间 t max {displaystyle t_{mbox{max}}} 和 B {displaystyle B} 的最大浓度 [ B ] max {displaystyle _{mbox{max}}} :用稳态近似法分析也可以取得类似的结果。连续反应的例子有:平行反应(又称竞争反应)指的是同一反应物可以同时进行几种不同的反应,生成不同的产物。如果两个平行反应都是一级反应,则三个速率方程分别为:对其积分可以得到 [ A ] {displaystyle } 、 [ B ] {displaystyle } 和 [ C ] {displaystyle } 的表达式:一个比较重要的关系式是: [ B ] [ C ] = k 1 k 2 {displaystyle {frac {}{}}={frac {k_{1}}{k_{2}}}} ,即任一瞬间两产物浓度之比都等于两反应速率常数之比。两个平行反应分别为一级和二级反应:想象下面的情形:反应物 A {displaystyle A} 在发生二级反应 A + R → C {displaystyle A+Rrightarrow C} 的同时,还有少量 A {displaystyle A} 发生水解(可以看作准一级反应): A + H 2 O → B {displaystyle A+H_{2}Orightarrow B} 。因此,反应的速率方程为:通过假设 [ A ] 0 − [ C ] ≈ [ A ] 0 {displaystyle _{0}-approx _{0}} ,在对上述式子积分后,可以得出主要产物 C {displaystyle C} 的浓度 [ C ] {displaystyle } 和副产物 B {displaystyle B} 的浓度 [ B ] {displaystyle } :以上只是几种基本的复合反应类型,除此以外,还有很多情况是上述几种基本复合反应的混合。请有兴趣的读者参见酶动力学、米氏方程和酶抑制剂等文章。速率方程的确定主要有以下三种方式:

相关

  • 异烟肼异烟肼(肼,汉语拼音:jǐng)(英文名:Isoniazid, Laniazid, Nydrazid, INH,全名为isonicotinic acid hydrazide),又称4-吡啶甲酰肼、雷米封(Rimifon),是异烟酸的酰肼。异烟肼为无色结晶或
  • 氟喹诺酮喹诺酮(英语:quinolone)是一类人工合成的含4-喹诺酮基本结构,对细菌DNA螺旋酶具有选择性抑制的抗菌剂。1962年最早的喹诺酮类药物萘啶酸首先用于临床,由于其抗菌谱窄、口服吸收差
  • 浓缩铀浓缩铀(Enriched Uranium),指经过同位素分离处理后,铀235含量超过天然含量的铀金属,与其相对的是贫化铀。第二次世界大战期间,美国的曼哈顿计划采用三种分离方式来提高其铀-235的
  • 保罗·瓦兹拉威克保罗·瓦兹拉威克(德语:Paul Watzlawick,1921年8月25日-2007年3月31日)是一位出生于奥地利的美籍家庭治疗师、心理学家、传播理论学家与哲学家,是传播理论的领军人物。在家庭治疗
  • 磁疗磁疗(magnetotherapy),即所谓的磁场治疗,是指涉及"磁场","磁力"等概念的伪科学性质的替代医学。例如宣称磁力或磁场对人体有正面效果,可利用磁的影响达到身心保养或疾病治疗的效果
  • 气候学大气物理学 大气力学(英语:Synoptic scale meteorology)天气 (分类) · (主题)气候 (分类) 气候变迁 (分类)气候学是研究是地球上气候的科学。气候和天气是两个既有联系又有区
  • 温度标准温度标准,简称温标,是以量化数值,配以温度单位来表示温度的方法。它也是温度计进行刻度的根据。只要以物理方法使两个不同的温度在环境中产生,并测量再予以不同数值。即为温标。
  • 大麦大麦(学名:Hordeum vulgare),是一种禾本科植物,主要的粮食和饲料作物,也可以作为啤酒或某些蒸馏酒的发酵原料。汉语俗称三月黄。 大麦是世界上第四大耕作谷物,仅次于玉米、稻和小麦
  • 希腊人列表希腊人按职业分类,可以从以下各列表中查询。
  • 戊基戊基(pentyl)是具有化学式 -C5H11的烷基官能团(取代基),有五个碳原子,是戊烷的取代形式。在在较老的文献中,会使用的非系统名称amyl来表示戊基,会用pentyl来表示有支链的五碳烷基,再