速率方程

✍ dations ◷ 2025-04-08 04:06:43 #速率方程
化学反应速率方程是利用反应物浓度或分压计算化学反应的反应速率的方程。对于一个化学反应 m A + n B → C {displaystyle mA+nBrightarrow C} ,化学反应速率方程(与复杂反应速率方程相比较)的一般形式写作:在这个方程中, [ X ] {displaystyle } 表示一种给定的反应物 X {displaystyle X} 的活度,单位通常为摩尔每升(mol/L),但在实际计算中有时也用浓度代替(若该反应物为气体,表示分压,单位为帕斯卡 (Pa)。 k {displaystyle k} 表示这一反应的速率常数,与温度、离子活度、光照、固体反应物的接触面积、反应活化能等因素有关,通常可通过阿累尼乌斯方程计算出来,也可通过实验测定。指数 x {displaystyle x} 、 y {displaystyle y} 为反应级数,取决于反应历程。在基元反应中,反应级数等于化学计量数。但在非基元反应中,反应级数与化学计量数不一定相等。复杂反应速率方程可能以更复杂的形式出现,包括含多项式的分母。上述速率方程的一般形式是速率方程的微分形式,它可以从反应机理导出,而且能明显表示出浓度对反应速率的影响,便于进行理论分析。将它积分便得到速率方程的积分形式,即反应物/产物浓度 [ X ] {displaystyle } 与时间 t {displaystyle t} 的函数关系式。(不适用于一级反应)(不适用于一级反应)(不适用于一级反应)表中, M {displaystyle M} 代表摩尔浓度(mol/L), t {displaystyle t} 代表时间, k {displaystyle k} 代表反应的速率常数。所说的“二级反应”和“ n {displaystyle n} 级反应”指的是纯级数反应,也就是反应速率只与一个反应物的二次方或   n {displaystyle n} 成正比。可逆反应(又称平衡反应、对行反应、对峙反应)指的是反应物与产物形成化学平衡的反应,其中正向和逆向反应同时进行,而且反应速率相等。它可以用下面的方程式来表示:k 1 {displaystyle k_{1}} 与 k − 1 {displaystyle k_{-1}} 又恰好能与反应的平衡常数 K {displaystyle K} 通过下列关系联系起来:下面讨论一个简单的单分子可逆一级反应:进行分离变数积分,可以得到:或者,将 x {displaystyle x} 定义为反应后某一时刻已经转化为 B {displaystyle B} 的 A {displaystyle A} 的浓度,则:为了求得反应的半衰期,令 [ A ] t = 1 2 [ A ] 0 {displaystyle _{t}={frac {1}{2}}_{0}} ,将其代入上面(1)式或(2)式,可以得到:可以看出,平衡反应中的半衰期与反应物的初始浓度无关。对行反应的例子有:连续反应(又称串联反应、连串反应)指的是如下类型的化学反应:对 ( 3 ) {displaystyle (3)} 式积分,得: [ A ] t = [ A ] 0 e − k 1 t … ( 6 ) {displaystyle _{t}=_{0}e^{-k_{1}t}qquad qquad ldots (6)}将 ( 6 ) {displaystyle (6)} 式代入 ( 4 ) {displaystyle (4)} 式,得: d [ B ] d t + k 2 [ B ] = k 1 [ A ] 0 e − k 1 t {displaystyle {frac {d}{dt}}+k_{2}=k_{1}_{0}e^{-k_{1}t}}对其进行积分:由于将 ( 6 ) {displaystyle (6)} 和 ( 7 ) {displaystyle (7)} 式代入,可得: [ C ] = [ A ] 0 k 2 − k 1 [ k 2 ( 1 − e − k 1 t ) − k 1 ( 1 − e − k 2 t ) ] = [ A ] 0 ( 1 + k 1 e − k 2 t − k 2 e − k 1 t k 2 − k 1 ) {displaystyle ={frac {_{0}}{k_{2}-k_{1}}}=_{0}(1+{frac {k_{1}e^{-k_{2}t}-k_{2}e^{-k_{1}t}}{k_{2}-k_{1}}})}这样, [ A ] {displaystyle } 、 [ B ] {displaystyle } 、 [ C ] {displaystyle } 三个浓度就都可以求出了。如果中间体 B {displaystyle B} 是目标产物,则 [ B ] {displaystyle } 达到最大值时(最佳时间)就必须终止反应。通过将 ( 7 ) {displaystyle (7)} 式对 t {displaystyle t} 取导数,令其为0,可以求出中间体 B {displaystyle B} 的最佳时间 t max {displaystyle t_{mbox{max}}} 和 B {displaystyle B} 的最大浓度 [ B ] max {displaystyle _{mbox{max}}} :用稳态近似法分析也可以取得类似的结果。连续反应的例子有:平行反应(又称竞争反应)指的是同一反应物可以同时进行几种不同的反应,生成不同的产物。如果两个平行反应都是一级反应,则三个速率方程分别为:对其积分可以得到 [ A ] {displaystyle } 、 [ B ] {displaystyle } 和 [ C ] {displaystyle } 的表达式:一个比较重要的关系式是: [ B ] [ C ] = k 1 k 2 {displaystyle {frac {}{}}={frac {k_{1}}{k_{2}}}} ,即任一瞬间两产物浓度之比都等于两反应速率常数之比。两个平行反应分别为一级和二级反应:想象下面的情形:反应物 A {displaystyle A} 在发生二级反应 A + R → C {displaystyle A+Rrightarrow C} 的同时,还有少量 A {displaystyle A} 发生水解(可以看作准一级反应): A + H 2 O → B {displaystyle A+H_{2}Orightarrow B} 。因此,反应的速率方程为:通过假设 [ A ] 0 − [ C ] ≈ [ A ] 0 {displaystyle _{0}-approx _{0}} ,在对上述式子积分后,可以得出主要产物 C {displaystyle C} 的浓度 [ C ] {displaystyle } 和副产物 B {displaystyle B} 的浓度 [ B ] {displaystyle } :以上只是几种基本的复合反应类型,除此以外,还有很多情况是上述几种基本复合反应的混合。请有兴趣的读者参见酶动力学、米氏方程和酶抑制剂等文章。速率方程的确定主要有以下三种方式:

相关

  • 亚斯伯格症候群阿斯伯格综合征(英语:Asperger syndrome,简称 AS),是广泛性发育障碍(PDD)中的一种综合征,属于自闭症谱系障碍(ASD)。其重要特征是社交与非言语交际的困难,同时伴随着兴趣狭隘及重复特定
  • 孟加拉孟加拉人民共和国(孟加拉语:গণপ্রজাতন্ত্রী বাংলাদেশ,Gônôprôjatôntri Bangladesh),通称孟加拉国(বাংলাদেশ .mw-parser-output .IPA{font-fami
  • 迪奥科里斯佩达努思·迪奥斯科里德斯(古希腊语:Πεδάνιος Διοσκουρίδης;拉丁语:Pedanius Dioscorides),(约40年-90年)。古罗马时期的希腊医生与药理学家,曾被罗马军队聘为军
  • 罗马建城纪年罗马建城纪年(Ab urbe condita,简作AUC、a.u.c. 或 a.u),是古罗马时期历史学家所用的纪年法之一。“Ab urbe condita”在拉丁文中意为“从(罗马)城建立起”。通常将始年定在公元
  • 盐碱地盐碱地指的是那些盐分含量高,pH大于9,难以生长植物尤其是农作物的土壤。根据所含盐分和碱份的多少,还可进一步分为轻度(0.1%~0.25%)、中度(0.25%~0.5%)、重度盐碱地(0.5%~0.6%)。盐碱地
  • 运河运河是指人工开凿的规模比较大的、可以使水流流过的运输通道。运河通常连接湖泊、河流和海洋,或横贯半岛、地峡而造。相传在四千年前美索不达米亚已有开运河,但具体难以考证。
  • HTcOsub4/sub高锝酸(HTcO4)是一种锝的含氧酸。它可以由七氧化二锝和水或氧化性酸(硝酸、浓硫酸、王水等)反应制得。它是一种暗红色易潮解的固体。它是一种强酸,很容易给出质子。
  • 扬马延扬马延(挪威语:Jan Mayen)是一个位于北冰洋的火山岛屿,是挪威的领土。岛长约55 km(34 mi),面积约 377 km2(146 sq mi) ,贝伦火山附近约114.2 km(71.0 mi)被冰川所覆盖,约占岛上约1
  • Cusub2/subO氧化亚铜是一价铜的氧化物,分子式为Cu2O,红色至红褐色结晶或粉末。它不溶于水及有机溶剂,但可溶于稀盐酸、稀硫酸、氯化铵溶液。溶于浓氨溶液形成无色配合物Cu(NH3)2+,其在空气
  • X射线结晶学X光散射技术或X射线衍射技术(英语:X-ray scattering techniques)是一系列常用的非破坏性分析技术,可用于揭示物质的晶体结构、化学组成以及物理性质。这些技术都是以观测X射线穿