速率方程

✍ dations ◷ 2025-04-26 11:56:40 #速率方程
化学反应速率方程是利用反应物浓度或分压计算化学反应的反应速率的方程。对于一个化学反应 m A + n B → C {displaystyle mA+nBrightarrow C} ,化学反应速率方程(与复杂反应速率方程相比较)的一般形式写作:在这个方程中, [ X ] {displaystyle } 表示一种给定的反应物 X {displaystyle X} 的活度,单位通常为摩尔每升(mol/L),但在实际计算中有时也用浓度代替(若该反应物为气体,表示分压,单位为帕斯卡 (Pa)。 k {displaystyle k} 表示这一反应的速率常数,与温度、离子活度、光照、固体反应物的接触面积、反应活化能等因素有关,通常可通过阿累尼乌斯方程计算出来,也可通过实验测定。指数 x {displaystyle x} 、 y {displaystyle y} 为反应级数,取决于反应历程。在基元反应中,反应级数等于化学计量数。但在非基元反应中,反应级数与化学计量数不一定相等。复杂反应速率方程可能以更复杂的形式出现,包括含多项式的分母。上述速率方程的一般形式是速率方程的微分形式,它可以从反应机理导出,而且能明显表示出浓度对反应速率的影响,便于进行理论分析。将它积分便得到速率方程的积分形式,即反应物/产物浓度 [ X ] {displaystyle } 与时间 t {displaystyle t} 的函数关系式。(不适用于一级反应)(不适用于一级反应)(不适用于一级反应)表中, M {displaystyle M} 代表摩尔浓度(mol/L), t {displaystyle t} 代表时间, k {displaystyle k} 代表反应的速率常数。所说的“二级反应”和“ n {displaystyle n} 级反应”指的是纯级数反应,也就是反应速率只与一个反应物的二次方或   n {displaystyle n} 成正比。可逆反应(又称平衡反应、对行反应、对峙反应)指的是反应物与产物形成化学平衡的反应,其中正向和逆向反应同时进行,而且反应速率相等。它可以用下面的方程式来表示:k 1 {displaystyle k_{1}} 与 k − 1 {displaystyle k_{-1}} 又恰好能与反应的平衡常数 K {displaystyle K} 通过下列关系联系起来:下面讨论一个简单的单分子可逆一级反应:进行分离变数积分,可以得到:或者,将 x {displaystyle x} 定义为反应后某一时刻已经转化为 B {displaystyle B} 的 A {displaystyle A} 的浓度,则:为了求得反应的半衰期,令 [ A ] t = 1 2 [ A ] 0 {displaystyle _{t}={frac {1}{2}}_{0}} ,将其代入上面(1)式或(2)式,可以得到:可以看出,平衡反应中的半衰期与反应物的初始浓度无关。对行反应的例子有:连续反应(又称串联反应、连串反应)指的是如下类型的化学反应:对 ( 3 ) {displaystyle (3)} 式积分,得: [ A ] t = [ A ] 0 e − k 1 t … ( 6 ) {displaystyle _{t}=_{0}e^{-k_{1}t}qquad qquad ldots (6)}将 ( 6 ) {displaystyle (6)} 式代入 ( 4 ) {displaystyle (4)} 式,得: d [ B ] d t + k 2 [ B ] = k 1 [ A ] 0 e − k 1 t {displaystyle {frac {d}{dt}}+k_{2}=k_{1}_{0}e^{-k_{1}t}}对其进行积分:由于将 ( 6 ) {displaystyle (6)} 和 ( 7 ) {displaystyle (7)} 式代入,可得: [ C ] = [ A ] 0 k 2 − k 1 [ k 2 ( 1 − e − k 1 t ) − k 1 ( 1 − e − k 2 t ) ] = [ A ] 0 ( 1 + k 1 e − k 2 t − k 2 e − k 1 t k 2 − k 1 ) {displaystyle ={frac {_{0}}{k_{2}-k_{1}}}=_{0}(1+{frac {k_{1}e^{-k_{2}t}-k_{2}e^{-k_{1}t}}{k_{2}-k_{1}}})}这样, [ A ] {displaystyle } 、 [ B ] {displaystyle } 、 [ C ] {displaystyle } 三个浓度就都可以求出了。如果中间体 B {displaystyle B} 是目标产物,则 [ B ] {displaystyle } 达到最大值时(最佳时间)就必须终止反应。通过将 ( 7 ) {displaystyle (7)} 式对 t {displaystyle t} 取导数,令其为0,可以求出中间体 B {displaystyle B} 的最佳时间 t max {displaystyle t_{mbox{max}}} 和 B {displaystyle B} 的最大浓度 [ B ] max {displaystyle _{mbox{max}}} :用稳态近似法分析也可以取得类似的结果。连续反应的例子有:平行反应(又称竞争反应)指的是同一反应物可以同时进行几种不同的反应,生成不同的产物。如果两个平行反应都是一级反应,则三个速率方程分别为:对其积分可以得到 [ A ] {displaystyle } 、 [ B ] {displaystyle } 和 [ C ] {displaystyle } 的表达式:一个比较重要的关系式是: [ B ] [ C ] = k 1 k 2 {displaystyle {frac {}{}}={frac {k_{1}}{k_{2}}}} ,即任一瞬间两产物浓度之比都等于两反应速率常数之比。两个平行反应分别为一级和二级反应:想象下面的情形:反应物 A {displaystyle A} 在发生二级反应 A + R → C {displaystyle A+Rrightarrow C} 的同时,还有少量 A {displaystyle A} 发生水解(可以看作准一级反应): A + H 2 O → B {displaystyle A+H_{2}Orightarrow B} 。因此,反应的速率方程为:通过假设 [ A ] 0 − [ C ] ≈ [ A ] 0 {displaystyle _{0}-approx _{0}} ,在对上述式子积分后,可以得出主要产物 C {displaystyle C} 的浓度 [ C ] {displaystyle } 和副产物 B {displaystyle B} 的浓度 [ B ] {displaystyle } :以上只是几种基本的复合反应类型,除此以外,还有很多情况是上述几种基本复合反应的混合。请有兴趣的读者参见酶动力学、米氏方程和酶抑制剂等文章。速率方程的确定主要有以下三种方式:

相关

  • 催眠药安眠药(英语:Hypnotic) (源自希腊语 Hypnos, sleep(睡眠)),是一类精神药物,用来提升睡眠品质,治疗失眠或术前麻醉,服用过量会致死。目前用于镇静(Sedation)的只有Afloqualone与Cloroqua
  • 美国国家科学院期刊《美国国家科学院院刊》(英语:Proceedings of the National Academy of Sciences of the United States of America,通常简称为 PNAS;PNAS USA)是美国国家科学院的官方学术周刊。
  • 钱币古希腊钱币- 在钱币学领域,古希腊钱币是其中形成时间最早,发行范围最广,并且对后世钱币体系影响最为深刻的一支。古希腊钱币通常可以按发行地分为以下几类:古希腊打制钱币从公元
  • 瑶语族瑶语支,又称勉语支,是苗瑶语系的一个语支。说瑶语支语言的人约有150万。自称“勉”、“金门”、“标敏”、“藻敏”等等。主要分布在华南(90万)和越南(50万),泰国、老挝、美国(主要
  • 日文日语书写系统汉字假名使用罗马字日文是指为了用文字来记载日语文章等的系统方法。现代日文由几种文字构成:起源于中国形意文字的汉字;表音文字(音节文字)平假名(文法型式上也常用
  • 近畿大学近畿大学(日语:近畿大学、英语:Kindai University)位于日本大阪府东大阪市的一所私立大学,创建于1934年,简称“近大”或“近畿大”。近畿大学的英文校名原本为“Kinki University
  • 脂肪酸合酶1XKT, 2CG5, 2JFD, 2JFK, 2PX6, 3HHD, 3TJM· fatty acid synthase activity · · · 3-oxoacyl- · 3-oxoacyl- · 3-hydroxypalmitoyl- · enoyl- · oleoyl-
  • 细菌分类表#厚壁菌门(Firmicutes)本表以LPSN网站的分类为基础(当前版本2008年1月7日),本分类代表原核生物分类的权威杂志IJSEM的分类系统,同时参考NCBI Taxonomy,但目前其它中文维基分类表可能依照其它标准,请注意
  • 乔治·伊夫林·哈钦森乔治·伊夫林·哈钦森(英语:George Evelyn Hutchinson,1903年1月30日-1991年5月17日),美国动物学家,知名于淡水湖的研究,被认为是美国湖沼学之父。哈钦森生于英国剑桥,先后就读于霍尔
  • 欧洲多用途巡防舰€6.70亿(2014年)(法国) €5.80亿(2005年)(意大利) €4.70亿欧洲多用途巡防舰(法语:Frégate européenne multi-mission,意大利语:Fregata europea multi-missione,通常缩写为FREMM),为法