爱因斯坦同步(庞加莱–爱因斯坦同步)是以讯号交换来同步位于不同地点时钟的约定方法。早在19世纪中叶该方法已经为电报员所用,而儒勒·昂利·庞加莱和阿尔伯特·爱因斯坦则进一步的将其用于相对论中,作为同时性的基础定义。同步约定主要是指惯性坐标系下时钟的同步。
若一束光讯号由时钟 A 的时间 (指 (a) 及 (b1)–(b3)) ”
马克斯·冯·劳厄第一个考察了爱因斯坦同步的自洽性 (当时的纪录请参考Minguzzi, E. (2011))。卢迪威格·席柏斯坦在他所著的教科书中也提供了类似的论述,只不过大部分的证明被他留给了读者作为练习。汉斯·赖欣巴哈重新讨论了马克斯·冯·劳厄的论证,而最终阿瑟·麦克唐纳在他的著作中得到了结论。结果表明,爱因斯坦同步符合前述条件当且仅当以下条件成立:
一但时钟同步了,单程的光速即可被量测。然而,上面的条件虽然保证了爱因斯坦同步的可行性,却并没有带有光速恒定的假设。我们考虑:
一个源自于劳厄及魏尔的理论提出-爱因斯坦同步恒可以成立 (即条件 (a)和 (b1)–(b3)成立) 且根据其定义单向光在全坐标轴上等速-这样的情况事实上等价于劳厄-魏尔往返条件。不过,相较之下劳厄-魏尔条件可以只靠着一个时钟来量测时间、不须倚靠时钟的同步约定,因此可以实际利用实验证明的优势这个给予了其相当的重要性。实际的实验也证明了任一惯性坐标系中劳厄-魏尔往返条件的确成立。
因为在两地时钟同步前量测单向光光速是没有意义的,多数尝试量测单向光速的实验都可以被用来证明劳厄-魏尔往返条件。
很容易被人忘记的是,爱因斯坦同步只是一个约定法,只有在惯性坐标系中才有效。于旋转坐标系中、甚至于在狭义相对论中,爱因斯坦同步的非递移性导致其并不再有用。这很明显可以由以下状况看出:在旋转系统中,若时钟一和时钟二非直接,而是经过一串中继的时钟进行同步,同步的结果将会因中继时钟的路径而有所不同。原因是因为在旋转的系统中,路径绕行的不同方向将导致一个一定的同步时间差。此现象可以在萨尼亚克效应(英语:Sagnac effect)及埃伦费斯特佯谬(英语:Ehrenfest paradox)中看到,而现代的全球卫星定位系统也将此现象纳入了考量。
赖欣巴哈为爱因斯坦同步约定的有效性提供确实的论证。虽然根据大卫·马拉门(英语:David B. Malament)的论述,爱因斯坦同步约定可以更进一步的由假设因果连结的对称性而得,不过此论点仍含有争议性。而此外尝试取代此约定的论点多数都被认为不再成立。
亨利·庞加莱于1898年所撰的一篇哲学论文中,针对了一些关于爱因斯坦同步的约定特性作了讨论。他认为光速在任意方向的恒定性假设有助于简洁的地解释物理定律,而对于事件于不同空间位置的同步定义,他亦论证了其最多只具约定性。庞加莱在1900年根据了这些约定,在现今已被取代的乙太理论(英语:Lorentz ether theory)框架中提出了以下的约定来定义时钟的同步:对于乙太具相对速度的 A、B 两人透过光讯号来同步彼此的时钟。因为相对性原理,他们各自认为光速在任意方向恒定、且分别相信自己对于乙太是静止的。也因此,他们只需要由讯号延迟校准之后的时间来确认彼此时钟的同步即可。
让我们假设存在不同地点的观察者们均用光讯号来同步他们的时钟。当试着调整讯号量测到的时间长时,因为他们都不认为自己具有任何方向的运动,所以都相信自己的光讯号在各方向速度不变。一人自 A 点向 B 运动、另一人则由 B 向 A ,各自量测延迟校准过后的讯号。时钟在调整过后,显示的时间
由以下方式决定:如果 为光速,且 是地球沿 轴正方向远离的速度,则 。庞加莱于1904年将同样的方法描述为:
想像有两个观测者借由光讯号来调正各自的时钟;他们互相交换讯号,不过因为知道讯号传递会有延迟,他们小心地对讯号进行延迟校准。当 B 接收到 A 的讯号,B 的时钟不应该读出与 A 送出讯号时相同的时间读值,而是应该读出加上了讯号传递延迟的时间读值。举个例子,假如 A 在时间 0 送出了一个讯号,则如果两者时钟同步, B 在收到讯号的时候,其时钟的读值
即应为讯号传递延迟所花的时间。而同样为了确认,B 也在时间 0 送出了一个讯号,则 A 同步后的时钟也应在收到讯号的时候显示 。 事实上,如果 A、B 为固定不动的话,两者的时钟同样的时间读值应代表他们在同一个“瞬间”。不过在其他的情况下,这个“传递讯号的延迟”对于两者会有所不同,例如,A 与 B 同时朝 A 至 B 的方向前进,则 A 随时都在往前、并早一刻接收 B 所传递的讯号,而 B 则在反向逃离 A 、因此都会晚一拍才收到讯号。在这情况下同步的时钟即不会真的同步,而是同步为各自“区域性的时间”-总是有一个时钟较另一个慢。