在电子工程学中,三相交流电一般是将可变的电压通过三组不同的导体。这三组电压幅值相等、频率相等、彼此之间的相位差为120度。
通常来说,三相交流电分三角形接法(Δ)和星型接法(Y)两种。三角形接法即为将各相电源或负载依次首尾相连,形成一个三角环;而星型接法则是将各相电源或负载的一端连接在一点,形成一个中性点,这种接法又称为三相三线制。如果从该中性点再引出一条中性线,则整个结构变为三相四线制。其中星型接法允许对各相加上不同的电压。例如常见的230/400伏三相交流电,就是在中性点和任意一相上加上230伏,余下的两相各加上400伏的电压。三角形接法由于各相首尾相连,只能存在一种电压,但是其优点在于即使三相中有一相失去作用,整个系统仍然可以运作(效率为原来的57.7%)。
假设有一台使用星型接法的发电机,将其三个负载的加入点命名为L1、L2、L3,则加在三相上的电压分别为:
其中:
线电压(Line to Line Voltage, Line Voltage)为两条相线间的电压。相电压(Vph)为负载端所获得的电压,随连接方式而异。
线电流(IL)为相线上的电流大小。相电流(Iph)为负载端的电流大小。
在星形接法,线电压是相电压的√3倍,线电流等于相电流。
在三角形接法,线电压等于相电压,线电流是相电流的√3倍。
星形接法和三角形接法的总功率,都可使用同一公式计算:
使用相同的阻抗组成电路,三角形接法的功率是星形接法的三倍。
三角形接法其中一个绕阻被移除,则变成开三角形(Open Delta)。
假设单相变压器可以输出电压V及电流I,两个变压器的功率为
用作三相变压器时,功率为
换言之,两个变压器可使用的功率为原来的86.6%。
对比三个变㱘器,整个系统的功率变成原来的57.7%。因为两个变压器的功率因素不同,其中一个提供无功功率,另一个消耗无功功率,所以可用输出并不是66.7%。
一般在三相的电力系统中,每一相负载的做功的大小均相同。通常会先论证电动机在稳定输出的情况下运作,再考虑不稳定的情况。
三相发电机的特性在于,当各相的负载具有电阻性质时,其输出功率0表示,其幅值为
式中,1和dp1分别为定子绕组的每相串联匝数和基波绕组因数;为极对数;1为定子绕组相数,对于三相异步电动机,1=3。
任意两个随着时间t变化的电压之间一定存在着相互位移的关系,同样,一个三相的电源通过变压器可以转化为多相。例如,利用特殊的变压器,能将三相的电源转变为一个二相电源。此类变压器一般称为相位转换器。当三相的电力通过高压线传输到用户的社区在传输到每一户家中时,一般利用角接电容或星接电容将三相变为单项,为家庭用户提供电力。但是相应的,输出功率会有所下降。
用传感器可以测量三相电路的输出功率,无中线要用到两个传感器,有中性线要用到三个。需要使用传感器的数量总是比测量的电路的数量少一个。若采用高压计量,则需要两个电压互感器及两个电流互感器(2VT+2CT)分别用来量度电压及电流。
若使用功率分析仪用来分析谐波电流,宜使用四个电流互感器测量所有带电导体的电流,以提高准确度。因为每个电流互感器都有误差,利有三个测量值计算剩下的未知值,误差也变成了三倍。