首页 >
自反性
✍ dations ◷ 2025-09-18 16:45:28 #自反性
自反关系是在逻辑学和数学中一种特殊的二元关系,这样的二元关系被称为自反的,也被称为具有自反性。自反关系的一个例子是关于实数集合的“等于”关系,因为每个实数都等于它自己。对称性、传递性以及自反性是定义等价关系的三个属性。对于集合X上的二元关系R,若满足:
∀
a
∈
X
(
a
R
a
)
{displaystyle forall ain X(aRa)}
,则称二元关系R是自反的,或称R具有自反性,或称R为自反关系。∀
a
∈
X
{displaystyle forall ain X}
,a = a,在一些系统中称为相等公理。一个非自反(irreflexive, anti-reflexive)的关系,是在一个集合中没有元素与自身相关的二元关系。例如实数上的“大于”关系(x> y)。请注意,没有自反的各种关系,并不全都是非自反的;可以定义一些元素与自己相关的关系,而另一些则不是(neither all nor none are)。例如,“x和y的乘积是偶数”的二元关系在偶数集上是自反的,在奇数集上是非自反的,在自然数集上既不是自反,也不是非自反。关于集合S上的一个关系,如果与某个元素相关的每个元素也与它自己有关,形式上就称为准自反:∀x,y∈S:x〜y⇒(x〜x∧y〜y)。一个例子是关于实数序列集合的“具有相同极限”的关系:并不是每个序列都有一个极限,因此这个关系不是自反的,但是如果一个序列与某个序列具有相同的极限,具有与其本身相同的限制。S上二元关系的自反闭包是S上最小的自反关系,它是〜的超集。等价地,它是S与S上的同一性关系的联合,形式如下:(≃)=(¯)∪(=)。例如,x <y的自反闭包是x≤y。在集合S上的二元关系的自反性约化或非自反核是最小的关系≆,使得≆共享与〜相同的自反闭包。它可以被看作是自反封闭的反面。 它相当于S上关于〜的形式关系的补充,形式上是:(≆)=(〜)(=)。也就是说,除了x〜x是真的,它相当于〜。例如,x≤y的自反减少是x <y。满足传递性的自反关系称为预序关系。满足反对称性的预序关系称为偏序关系。满足对称性的预序关系称为等价关系。自反关系举例:一个“n”-元素集合上,自反关系的数目是2n2−n.
相关
- 口腔颌面外科口腔颌面外科(英语:Oral and Maxillofacial Surgery)是一个现代医疗的外科,该外科主要治理头部、颈部、脸部、下颌、口腔和颌面部位,包括软组织和硬组织的损伤和疾病,并通过药物及
- 布夏氏结节布夏氏结节(英语:Bouchard's nodes)是近端指骨关节(手指或脚趾中间的关节)上坚硬的骨头增生或胶状囊肿。常见于手部患有骨关节炎的患者,是由关节软骨钙化增生(英语:bone spur))的骨刺
- 壳聚糖壳聚糖(英语:Chitosan),是一种线性多糖,当中由氨基葡萄糖(脱乙酰单位)和N-乙酰葡糖胺(乙酰单位)随机分布,并透过β-(1-4)糖苷键组合而成。由于甲壳素(Chitin)也有多个译名,如几丁质或壳多糖
- 黑山县黑山县是中国辽宁省锦州市下辖的一个县。位于辽宁省西部。明代名为镇远堡,清初又叫小河山,小黑山。县城东北隅有小黑山,古上帝庙建于其颠。该山虽不甚高,但登临其上,远望群山,近瞻
- Carl Jung卡尔·古斯塔夫·荣格(Carl Gustav Jung,1875年7月26日-1961年6月6日),瑞士心理学家、精神科医师,分析心理学的创始者。荣格出生于瑞士一个凯斯威尔的村庄。荣格六个月大时,家庭移
- 克罗恩病克隆氏症(Crohn's disease),又称克罗恩病、克隆氏症候群或局部性肠炎,是一种发炎性肠道疾病,可能影响肠胃道从口腔至肛门的任何部分。症状通常包含:腹痛、腹泻(如果发炎严重可能会
- 大字陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧ 小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧ 书法 ‧ 飞白书笔画 ‧
- 苯二甲酸苯二甲酸(Benzenedicarboxylic acid),是苯环上两个氢原子被羧基取代而成的一种有机化合物,分子式C6H4(COOH)2。可以指:
- 裂缝喷发口裂缝喷发口(英语:Fissure vent),也称为火山裂隙或裂隙喷发,是一个线状的火山口,熔岩能通过它喷发,通常没有任何爆炸活动。喷发口宽往往是几米宽,并且可能长达数公里。裂缝喷发口可能
- span class=chemf style=white-space:nowrap;Csub29/sub二十九烷是一个化学式为C29H60的直链烷烃。它有1,590,507,121个结构异构体。