原地算法

✍ dations ◷ 2025-11-24 14:48:22 #算法

在计算机科学中,一个原地算法(in-place algorithm)基本上不需要额外辅助的数据结构,然而,允许少量额外的辅助变量来转换数据的算法。当算法运行时,输入的数据通常会被要输出的部分覆盖掉。不是原地算法有时候称为非原地(not-in-place)或不得其所(out-of-place)。

一个算法有时候会错误地被称为原地算法,只因为它用它的输出数据会覆盖掉它的输入数据。事实上这条件既不充分(在快速排序案例中所展示的)也非必要;输出数据的空间可能是固定的,或如果以输出为流数据而言,也甚至是可能无法被数清楚的。另一方面来看,有时候要决定一个算法是不是原地,而数它的输出空间可能是比较可行的,像是底下的第一个的reverse示例;如此使得它更难去严格地定义原地算法。在理论上的应用像是log-space reduction,更是典型的总是忽略输出的空间(在这些状况,更重要的是输出为)。


假设我们想要将拥有个项目的数组反过来。一个最简单作这件事的方式是这样:

 function reverse(a)     allocate b     for i from 0 to n         b = a     return b

不幸地,这样需要O()的空间来创建数组,且配置存储器通常是一件缓慢的运算。如果我们不再需要,我们可使用这个原地算法,用它自己反转的内容来覆盖掉:

 function reverse-in-place(a)     for i from 0 to floor(n/2)         swap(a, a)

在其他的例子,有数个排序算法会原地重新排放数组内容成为排序过的顺序,包含:

快速排序通常被描述为一个原地算法,但是事实上并不是。大部分的实现需要O(log )的空间来支持它的分治法(divide-and-conquer)递归。

大部分选择算法也是原地,虽然在找到最后结果的过程中,有某些相当地重新排列输入数组,但却是固定大小的结果。

在计算复杂性理论中,原地算法包含使用O(1)空间复杂度的所有算法,DSPACE(1)类型。这个类型是非常有限的,它与正则语言1相等。事实上,它甚至不包含上面所列的任何示例。

因为这个原因,我们也考虑在L的算法,这类型的问题需要O(log )额外的空间,来成为原地。虽然这个似乎与我们先前的定义矛盾,但是我们必须认为在抽象的世界,输入的数据可以是任意巨大的。在一部真实的电脑,指针(pointer)仅需要一个小的固定数量空间,因为物理内存的数量是固定的,但是一般上一个大小为的数列需要O(log )比特来作为它的索引(index)。

结果是否意指快速排序是原地的?其实一点也不—技术上来说,它需要O(log2 )空间,因为它的O(log )堆栈帧架(stack frames)每一个都含有一个固定数量的指针(每一个大小为O(log ))。

辨别拥有L的原地算法拥有某些有趣的含意;举例来说,它意指存在一个(相当地复杂)原地算法,决定在一个无向图(undirected graph)中的任两个节点(nodes)之间是否存在一条路径(path),这是一个需要O()个额外的空间,使用典型的算法像是深度优先搜索(depth-first search)(每个节点有个走访的比特)的问题。有些问题像是决定一个图形是否为二分图(bipartite graph)或测试两个图形使否有相同数量的连通分支,接着针对这些问题产出原地算法。参考SL有更多的信息。

在很多情况,借由使用随机化算法(randomized algorithms),一个算法的空间需求可以被极度地裁减掉。举个示例,我们希望知道一个有个顶点(vertices)的图形中的两个顶点是否位于图中同一个连接组件(connected component)。没有已知简单、决定性的(deterministic)、原地算法来决定这件事,但是如果我们简单地由一个顶点开始,且运行大约203步的随机走路(random walk),那我们会偶遇到其他顶点来提供它不是在同一个组件(component)中的机会是非常地高。类似地,对于质数测试(primality test)有简单的随机化原地算法像是米勒-拉宾检验,也有简单原地随机化整数分解算法像是Pollard's rho算法。参考RL和BPL有对这个现象更多的讨论。

函数程序设计(functional programming)语言经常不鼓励或不支持会覆盖数据的原地算法,因为这是副作用的一种类型;反之,他们只允许创建新的数据。然而,好的函数语言编译器(compiler)在当一个与已存在之非常相似的对象被创建时,都经常会识别出来,然后旧的就会被丢弃掉,而且会最把这最优化为一个简单的"引擎盖之下"转换。

基本上,有可能小心地建构原地算法而不会更动数据(除非数据已不会再被使用),但是在实际上这却很少见到。参考纯函数数据结构(purely functional data structure)。

Maciej Liśkiewicz and Rüdiger Reischuk. The Complexity World below Logarithmic Space. , pp.64-78. 1994.

Omer Reingold. Undirected ST-connectivity in Log-Space. Electronic Colloquium on Computational Complexity. No. 94.

1. Liśkiewicz and Reischuk, pg.3, Theorem 2.

2. Reingold.

相关

  • 生物武器生化武器,旧称细菌武器,是指用来杀伤人员、牲畜和毁坏农作物的致病性微生物及其毒素,依赖生物与生物之间的克制对有生力量发挥杀伤作用。生物武器的施放装置包括炮弹、炸弹、火
  • 石棉沉滞症石绵沉滞症也称为石绵肺,是一种石绵纤维造成肺长期发炎及纤维化留疤(英语:Pulmonary fibrosis)的病症,症状有呼吸困难、咳嗽、喘鸣和胸痛,可能带来的并发症有肺癌、间皮瘤和肺性心
  • β-半乳糖苷酶β-半乳糖苷酶(英语:β-galactosidase)是一种水解酶,催化β-半乳糖苷水解成单糖。使β-半乳糖苷酶作用的底物包括神经节苷脂GM1、乳糖苷、乳糖、各种糖蛋白。β-半乳糖苷酶是一
  • 大曲酒大曲酒,又称大麹酒,是中国烧酒的一种。这种分类,主要是因为使用麹的不同。以大麹进行固态酿造,之后制成的蒸馏酒,就称为大麹酒。著名的大曲酒品牌有,汾酒,五粮液,茅台酒等,此外,还有中
  • 轻轨列车高雄捷运环状轻轨CAF Urbos 3电联车是指在高雄捷运环状轻轨上营运的动力分散式电联车,在全线完工时总数预定达到24列。第一阶段九列列车为西班牙CAF公司Urbos 3系列车辆,首列
  • 飞轮海飞轮海(Fahrenheit),是台湾的4人男子演唱组合,为可米国际影视事业股份有限公司与华研国际音乐旗下的团体,于2005年12月28日以4人组合正式出道。飞轮海的团名是华氏温度的德文原文
  • 第一次阿拉曼战役第一次阿拉曼战役是第二次世界大战北非战场上,轴心国司令埃尔温·隆美尔所指挥的非洲装甲军团与英国中东战场司令克劳德·奥金莱克所统领之英联邦军队在埃及阿拉曼进行之战役
  • 建制派建制派可以指:建制可以指:
  • 奉天省奉天省简称奉,为满州国时期的省份之一,省域前期(1931年-1934年)大致为今日之辽宁省,中后期(1934年-1945年)相当于现今辽宁省中部的一小部分。1931年(民国20年)、九一八事变后,日本关东
  • 姆巴利湖姆巴利湖(法语:Lac de la Mbali),是中非共和国的湖泊,位于该国中南部,由翁贝拉-姆波科省负责管辖,处于姆巴利河,长28公里、宽7公里,面积40平方公里,海拔高度547米。