原地算法

✍ dations ◷ 2025-08-17 02:39:48 #算法

在计算机科学中,一个原地算法(in-place algorithm)基本上不需要额外辅助的数据结构,然而,允许少量额外的辅助变量来转换数据的算法。当算法运行时,输入的数据通常会被要输出的部分覆盖掉。不是原地算法有时候称为非原地(not-in-place)或不得其所(out-of-place)。

一个算法有时候会错误地被称为原地算法,只因为它用它的输出数据会覆盖掉它的输入数据。事实上这条件既不充分(在快速排序案例中所展示的)也非必要;输出数据的空间可能是固定的,或如果以输出为流数据而言,也甚至是可能无法被数清楚的。另一方面来看,有时候要决定一个算法是不是原地,而数它的输出空间可能是比较可行的,像是底下的第一个的reverse示例;如此使得它更难去严格地定义原地算法。在理论上的应用像是log-space reduction,更是典型的总是忽略输出的空间(在这些状况,更重要的是输出为)。


假设我们想要将拥有个项目的数组反过来。一个最简单作这件事的方式是这样:

 function reverse(a)     allocate b     for i from 0 to n         b = a     return b

不幸地,这样需要O()的空间来创建数组,且配置存储器通常是一件缓慢的运算。如果我们不再需要,我们可使用这个原地算法,用它自己反转的内容来覆盖掉:

 function reverse-in-place(a)     for i from 0 to floor(n/2)         swap(a, a)

在其他的例子,有数个排序算法会原地重新排放数组内容成为排序过的顺序,包含:

快速排序通常被描述为一个原地算法,但是事实上并不是。大部分的实现需要O(log )的空间来支持它的分治法(divide-and-conquer)递归。

大部分选择算法也是原地,虽然在找到最后结果的过程中,有某些相当地重新排列输入数组,但却是固定大小的结果。

在计算复杂性理论中,原地算法包含使用O(1)空间复杂度的所有算法,DSPACE(1)类型。这个类型是非常有限的,它与正则语言1相等。事实上,它甚至不包含上面所列的任何示例。

因为这个原因,我们也考虑在L的算法,这类型的问题需要O(log )额外的空间,来成为原地。虽然这个似乎与我们先前的定义矛盾,但是我们必须认为在抽象的世界,输入的数据可以是任意巨大的。在一部真实的电脑,指针(pointer)仅需要一个小的固定数量空间,因为物理内存的数量是固定的,但是一般上一个大小为的数列需要O(log )比特来作为它的索引(index)。

结果是否意指快速排序是原地的?其实一点也不—技术上来说,它需要O(log2 )空间,因为它的O(log )堆栈帧架(stack frames)每一个都含有一个固定数量的指针(每一个大小为O(log ))。

辨别拥有L的原地算法拥有某些有趣的含意;举例来说,它意指存在一个(相当地复杂)原地算法,决定在一个无向图(undirected graph)中的任两个节点(nodes)之间是否存在一条路径(path),这是一个需要O()个额外的空间,使用典型的算法像是深度优先搜索(depth-first search)(每个节点有个走访的比特)的问题。有些问题像是决定一个图形是否为二分图(bipartite graph)或测试两个图形使否有相同数量的连通分支,接着针对这些问题产出原地算法。参考SL有更多的信息。

在很多情况,借由使用随机化算法(randomized algorithms),一个算法的空间需求可以被极度地裁减掉。举个示例,我们希望知道一个有个顶点(vertices)的图形中的两个顶点是否位于图中同一个连接组件(connected component)。没有已知简单、决定性的(deterministic)、原地算法来决定这件事,但是如果我们简单地由一个顶点开始,且运行大约203步的随机走路(random walk),那我们会偶遇到其他顶点来提供它不是在同一个组件(component)中的机会是非常地高。类似地,对于质数测试(primality test)有简单的随机化原地算法像是米勒-拉宾检验,也有简单原地随机化整数分解算法像是Pollard's rho算法。参考RL和BPL有对这个现象更多的讨论。

函数程序设计(functional programming)语言经常不鼓励或不支持会覆盖数据的原地算法,因为这是副作用的一种类型;反之,他们只允许创建新的数据。然而,好的函数语言编译器(compiler)在当一个与已存在之非常相似的对象被创建时,都经常会识别出来,然后旧的就会被丢弃掉,而且会最把这最优化为一个简单的"引擎盖之下"转换。

基本上,有可能小心地建构原地算法而不会更动数据(除非数据已不会再被使用),但是在实际上这却很少见到。参考纯函数数据结构(purely functional data structure)。

Maciej Liśkiewicz and Rüdiger Reischuk. The Complexity World below Logarithmic Space. , pp.64-78. 1994.

Omer Reingold. Undirected ST-connectivity in Log-Space. Electronic Colloquium on Computational Complexity. No. 94.

1. Liśkiewicz and Reischuk, pg.3, Theorem 2.

2. Reingold.

相关

  • 视光学眼科视光学(英文:Optometry),是光学和眼科的结合,运用光学仪器来检查眼睛的视觉功能,并采取相应的非手术或手术的手段来治疗病人的近视、远视、散光、老视和双眼视觉功能性异常等
  • 生物实验室生物安全水平(biosafety level (BSL))是指在封闭的实验室环境中隔离危险的病原体所需的一套生物安全防护措施。一般学校里都会有生物实验室,医院的验血实验室也是生物安全实验
  • 骶骨骶骨又称荐椎(拉丁语:Sacrum、日语:仙骨、薦骨),是一大形的三角形骨,由5块椎骨合并而成的。 它是骨盆带的基部,位于骨盆腔的后面,在2块髋骨之间。脊柱Sacrum, dorsal surface.Latera
  • 宪宗朝鲜宪宗(朝鲜语:조선 헌종/朝鮮 憲宗 Joseon Heonjong;1827年9月8日-1849年7月25日),李烉 (朝鲜语:이환/李烉 Yi Hwan),是朝鲜王朝的第24代君主,1834年至1849年在位。庙号宪宗,谥号庄肃
  • 贫困线贫困线(poverty threshold)或贫穷线、贫困线,是为满足生活标准而需的最低收入水平。一如贫穷的认定,在已发展国家里贫困线(如美国)的认定标准明显比第三世界高。故联合国在1993年
  • 士部士部,为汉字索引里为部首之一,康熙字典214个部首中的第三十三个(三划的则为第四个)。就繁体字部首而言,字体主体可辨认为士,且无其他部首可用者将部首归为士部。要注意的是,在繁体
  • 绚烂舞踏祭《绚烂舞踏祭》(The Mars Daybreak)为日本索尼电脑娱乐所推出之机器人动画,全部共26集。本剧于2004年4月1日到2004年9月23日于东京电视台播出,DVD由群英社代理、博英社发行,并在2
  • 希瑟·诺尔特希瑟·安·诺尔特(英语:Heather Ann Nauert,1970年1月27日-)是美国记者和前政府官员,自2017年4月24日起至2019年4月3日担任美国国务院发言人。她现在是一位哈德逊研究所的高级研究
  • 德川赖宣德川赖宣(1602年4月28日-1671年2月19日),父亲是江户幕府第一代征夷大将军德川家康,母亲是侧室养珠院(阿万之方),和水户德川家第一代德川赖房是同父同母的亲兄弟。八代将军德川吉宗的
  • 西美昂·萨克森-科堡-哥达斯基西美昂·鲍里索夫·萨克森-科堡-哥达斯基(Симеон Борисов Сакскобургготски,1937年6月16日-),又称西美昂二世(Симеон II),保加利亚最后一任沙皇