质能方程

✍ dations ◷ 2025-01-23 03:03:17 #质能方程
E = mc²(即质能等价,亦称为质能转换公式、质能方程)是一种阐述能量(E)与质量(m)间相互关系的理论物理学公式,公式中的 c 是物理学中代表光速的常数。该公式表明物体相对于一个参照系静止时仍然有能量,这是违反牛顿系统的,因为在牛顿系统中,静止物体是没有能量的。这就是为什么物体的质量被称为静止质量。公式中的E可以看成是物体总能量,它与物体总质量(该质量包括静止质量和运动所带来的质量)成正比,只有当物体静止时,它才与物体的(静止)质量(牛顿系统中的质量)成正比。这也表明物体的总质量和静止质量不同。反过来讲,一束光子在真空中传播,其静止质量是0,但由于它们有运动能量,因此它们也有质量。注意:有些术语使用中,质量单指静止质量,因为总质量和能量是等价的概念。若 m {displaystyle m} 指代静止质量,则公式应改写为而因此, γ m {displaystyle gamma m,} 也就是运动质量的表达式,其中 γ {displaystyle gamma } 为洛伦兹因子。以一外力 F {displaystyle mathbf {F} } 对物体作功,根据功-动能定理,物体的微小动能变化为d K = F ⋅ d x = d p d t ⋅ d x = d x d t ⋅ d p {displaystyle mathrm {d} K=mathbf {F} cdot mathrm {d} mathbf {x} ={frac {mathrm {d} mathbf {p} }{mathrm {d} t}}cdot mathrm {d} mathbf {x} ={frac {mathrm {d} mathbf {x} }{mathrm {d} t}}cdot mathrm {d} mathbf {p} }式中, p {displaystyle mathbf {p} } 为物体的动量 γ m u {displaystyle gamma mmathbf {u} } (此处的 m {displaystyle m} 为静止质量),而 d x d t {displaystyle {frac {mathrm {d} mathbf {x} }{mathrm {d} t}}} 为物体的速度 u {displaystyle mathbf {u} } 。因此此式可改写为d K = u ⋅ d ( γ m u ) = m u ⋅ d ( γ u ) {displaystyle mathrm {d} K=mathbf {u} cdot mathrm {d} left(gamma mmathbf {u} right)=mmathbf {u} cdot mathrm {d} left(gamma mathbf {u} right)} 。根据以下等式(详见四维速度),U μ U μ = − γ 2 c 2 + γ u ⋅ γ u = − c 2 = constant {displaystyle U_{mu }U^{mu }=-gamma ^{2}c^{2}+gamma mathbf {u} cdot gamma mathbf {u} =-c^{2}=operatorname {constant} }将等式的两侧取微小量并重新整理,− 2 c 2 γ d γ + 2 γ u ⋅ d ( γ u ) = 0 {displaystyle -2c^{2}gamma ,mathrm {d} gamma +2gamma mathbf {u} cdot mathrm {d} left(gamma mathbf {u} right)=0}u ⋅ d ( γ u ) = c 2 d γ {displaystyle mathbf {u} cdot mathrm {d} left(gamma mathbf {u} right)=c^{2}mathrm {d} gamma } 。以此等式代入上方的 d K {displaystyle mathrm {d} K} 关系式得d K = m c 2 d γ {displaystyle mathrm {d} K=mc^{2}mathrm {d} gamma }K = ∫ u = 0 u = u m c 2 d γ ( u ) = γ m c 2 − m c 2 {displaystyle K=int _{mathbf {u} =mathbf {0} }^{mathbf {u} =mathbf {u} }mc^{2}mathrm {d} gamma left(mathbf {u} right)=gamma mc^{2}-mc^{2}}此即为相对论下的动能表达式,注意式中 γ m c 2 {displaystyle gamma mc^{2}} 仅与四维动量的时间分量相差一比例常数 c {displaystyle c} 。若以此定义物体的能量,E ≡ P 0 c = γ m c 2 {displaystyle Eequiv P^{0}c=gamma mc^{2}}则 E = K + m c 2 {displaystyle E=K+mc^{2}} 。其中 m c 2 {displaystyle mc^{2}} 为物体因具有质量而具有的能量,即E 0 = m c 2 {displaystyle E_{0}=mc^{2}} 。注:若改以 m 0 {displaystyle m_{0}} 表示内秉质量, m = γ m 0 {displaystyle m=gamma m_{0}} 表示相对论质量,则亦有 E = m c 2 {displaystyle E=mc^{2}} 之关系。在“狭义相对论”里,这一公式表明能量和质量有比例关系,可等价描述,现今夸克等物质即以eV(电子伏特)此能量单位为常用单位。虽然很多人并不确切的知道这个公式的真实含义,但它已经成为人类历史上最有名的公式之一,并成为文化的一部分。有人认为这一公式直接导致了原子弹的设计和制造,但事实上质能转换公式对于原子理论和原子弹的设计和制造并无任何的直接或间接促进作用,而仅仅是后人用来解释原子弹原理的解释工具之一。而爱因斯坦本人对于原子弹制造的贡献在于:这个等式源于阿尔伯特·爱因斯坦对于物体惯性和它自身能量关系的研究。研究的著名结论就是物体质量实际上就是它自身能量的量度。为了便于理解此关系的重要性,可以比较一下电磁力和引力。电磁学理论认为,能量包含于与力相关而与电荷无关的场(电场和磁场)中。在万有引力理论中,能量包含于物质本身。因此物质质量能够使时空扭曲,但其它三种基本相互作用(电磁相互作用,强相互作用,弱相互作用)的粒子却不能,这并不是偶然的。这个方程对于原子弹的发展是关键性的。通过测量不同原子核的质量和那个数量的独立质子和中子的质量和的差,可以得到原子核所包含的结合能的估计值。这不仅显示可能通过轻核的核聚变和重核的核裂变释放这个结合能,也可用于估算会释放的结合能的量。注意质子和中子的质量还在那里,它们也代表了一个能量值。一个著名的花絮是爱因斯坦最初将方程写为dm = L/c²(用了一个“L”,而不是“E”来表示能量,而E在其它地方也用来表示能量)。一千克物质完全等价于重要的是要注意实际的静质量到能量的转换不大可能是百分之百有效的。一个理论上完美的转化是物质和反物质的湮灭;对于多数情况,转换会有很多含静质量的副产品,因而只有少量的静质量真正被转换成能量。在该方程中,质量就是能量,但是为了简明起见,转换这个词常常被用于代替质能等价关系,实际上通常所指的一般是静质量和能量的转换。E=mc²适用于所有有质量的物体,因为它是质量由能量导出的断言,或者说能量由质量导出的论断,而两者可以互相取代。它对运动物体的应用依赖于方程中使用的质量的定义。通常,该方程用于相对于物体不动的参考点。但是同样的物体从另外一个参照系来看可以是运动的,所以,对于这个参照系,该方程表示质量是不同的。从现代物理的观点来看,这个方程表示物质和能量是同一个概念。洛伦兹(Hendrik Lorentz,1853-1928) 在他的电子理论里以力和加速度的比(代替动量和速率的比)来定义质量。他发现当外力平行或垂直与运动方向时的有效质量不一样:平行时 m ∥ = γ 3 m 0 {displaystyle m_{parallel }=gamma ^{3}m_{0}} 而垂直时 m ⊥ = γ m 0 {displaystyle m_{perp }=gamma m_{0}} 。只有在力垂直于运动方向时Lorentz质量才是等同于后来的相对论质量。爱因斯坦在最初的论文()内计算了以上两个质量(原文内垂直质量有错)。文内他用的m指的是静质量。现在称为相对论质量的概念最初由R.C. Tolman在1912年提出。这和静质量m0 (也即物体在它在其中静止的参照系中的质量)关系如下:但要得到 E = m c 2 {displaystyle E=mc^{2}} 方程,必须从方程E² = p²c² + m²c4出发然后置p = 0,这表示置速度v = 0。也就是说,我们现在有一个特殊情况,物体不在移动,且E²只等于m²c4,或E = mc²。只是在这种特殊情况下,E = mc²成立。在任何其它的速度,我们必须把p²c²放回一般的方程中。如果我们把v = 0代入方程 m = γ m 0 = m 0 1 − v 2 / c 2 {displaystyle m=gamma m_{0}={frac {m_{0}}{sqrt {1-v^{2}/c^{2}}}}} ,便得m = m 0 {displaystyle m_{0}} 。所以,当物体静止时,也就是说,速度v = 0时,静止质量和相对论质量是相同,方程E = mc²就可以写为E = m 0 c 2 {displaystyle m_{0}c^{2}} ,两者没有不同。然后,使用相对论质量,方程 E = m c 2 {displaystyle E=mc^{2}} 必须写为E = m 0 c 2 {displaystyle m_{0}c^{2}} ,它不适用于以任何速度移动的物体,只适用于速度为零的物体,因为 m 0 {displaystyle m_{0}} 只适用于v = 0,当v = 0时,m = m 0 {displaystyle m_{0}} 。现代的物理学家已很少使用相对论质量了,有人后来指出爱因斯坦本身也不喜欢“相对论质量”此概念:It is not good to introduce the concept of the mass M = m / 1 − v 2 / c 2 {displaystyle M=m/{sqrt {1-v^{2}/c^{2}}}} of a moving body for which no clear definition can be given. It is better to introduce no other mass concept than the 'rest mass' m {displaystyle m,!} . Instead of introducing M {displaystyle M,!} it is better to mention the expression for the momentum and energy of a body in motion.作者如Taylor和Wheeler完全避开它因为:现代的物理学家都用m来表示静止质量,它是四维动量和四维速率的比:而相对论质量就指物体的能量或四元动量的时间部:其中 p = γ m v {displaystyle p=gamma mv} 是物体的相对论动量。当速度为零时,便化为E = mc²。以下仍用m来表示相对论质量,用mo来表示静止质量。假设在静止时的能量为moc²,而总能量是动能加上静止时的能量,其相对性的动能就是:当低速度的情况时,与动能的古典表达式仍然基本吻合,因此:两个公式可以通过用泰勒级数展开 γ {displaystyle gamma } 来证明一致,将上式代回原始的方程有,因此有或者也就是能量的相对论表达式,这和只有动能的经典牛顿表达式不同。这表示相对论是对经典力学的高阶修正而且在低能或者说经典领域牛顿和相对论力学不是等价的。那么什么是等价的?仅仅是动能的表达式,而不是总能量。在从经典力学到高速情形的外推中,爱因斯坦证明了经典力学是错误的。在低速物体的情形,例如用于建立经典力学的那些,经典力学是相对论力学的一个子集。两个理论仅在经典领域之外导致矛盾。阿尔伯特·爱因斯坦没有在他的1905年论文中精确地表述这个方程"Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?"(“一个物体的惯性依赖于它所包含的能量吗?”,发表于《物理学年鉴》9月27日),这是他现在被称为《奇迹年论文》的文章之一。该论文所说的确切内容是:‘若一个物体以辐射形式发射能量L,它的质量减少L/c²。’,这个情况下辐射的是动能,而质量是那时候通常所指的质量,也就是今天我们根据情况称为静能量或者不变质量。这是在发射能量前后的质量差,它等于L/c²,而不是物体的整个质量。在那时它仅仅是理论上的还未被实验证明。爱因斯坦不是唯一将能量联系到质量的人,但他是第一个将这个作为更大的理论的一部分推出的,而且,是根据这个理论的前提所导出的结果。根据Umberto Bartocci(佩鲁贾大学数学史家),该方程早在两年之前就由Olinto De Pretto发表了,他是一个意大利维琴查的工业家。但是没有主流史学家认为这个结论是真实的或者是重要的,他们认为即便De Pretto是首位发现该公式的人,但是只有在爱因斯坦真正将它和相对论建立联系之后,该公式才真正显示出价值。E=mc²也是一部在2005年时播放的爱因斯坦电视传记之名称,该传记主要集中在讲述1905年间的事情。

相关

  • 黏液层黏液层(slime layer)为一种细菌的特殊构造,它是围绕细菌细胞的一层很容易除去(比如通过离心的方法),而且无规则的物质。黏液层的主要化学成分为外多糖、糖蛋白,以及糖脂。值得注意
  • 头孢地嗪头孢地嗪是一种第三代头孢菌素,属于半合成的抗生素。其对β内酰胺酶稳定,对头孢菌素酶和青霉素酶极稳定,且有较长的生物学半衰期。头孢地嗪对革兰阳性菌、革兰阴性菌均有抗菌活
  • 阿尔冈昆语族阿冈昆语族(Algonquian languages)是美洲原住民语言的一支,阿尔吉克语系下最主要的一个语族。它是阿尔冈昆人所操的语言,使用者从北美洲东岸一直延伸到落基山脉。语族下不少语言
  • 旅游地理学旅游地理学是研究人类旅行游览与地理环境关系的一门学科。旅游地理学不仅同地理学的许多分支学科的关系密切,而且与多门学科彼此渗透。如:社会学、民俗学、考古学、历史学、建
  • 靛蓝色,为光谱中从波长420到440奈米的色彩,一般泛指介于蓝色和蓝紫色之间的颜色。有一种方法可以观察光谱靛,将一般CD片置放于萤光管下即可反射出靛色。 原理是萤光灯因含有水
  • 硅酸盐化学上,硅酸盐指由硅和氧组成的化合物(SixOy),有时亦包括一或多种金属和或氢。它亦用以表示由二氧化硅或硅酸产生的盐。在普通情况下,最稳定的硅化合物是二氧化硅(SiO2)——俗称石
  • 欧洲一体化欧洲一体化是指欧洲整体或部分地区在政治、法律、经济、社会、文化等领域统合的历史。现代欧洲统合主要由欧洲联盟和欧洲委员会推动进行。最初提出欧洲统合构想的是理察·尼
  • 唐装唐装,台湾又称汉衫,是清代至现代中国人及华人的一种传统服饰。当今唐装是从明代对襟衣、罩甲以及清朝时期的马褂发展而来,特点是立领及盘扣,1950年代之后,一些唐装又吸收了一些西
  • 嘉义医院卫生福利部嘉义医院(简称嘉义医院)是一所位于台湾省嘉义市西区的卫生福利部所属医院,以777床的病床数位列南台湾规模最大的部立医院。市区1路 嘉义医院站(位于中兴路)家庭医学科
  • 考普瓦利1法国统计部门在计算土地面积时,不计算面积大于1平方公里的湖泊、池塘、冰川和河口。考普瓦利(法语:Coupvray)是法国北部一个市镇,位于巴黎远郊,由法兰西岛大区辖下省份塞纳-马恩