首页 >
TSP
✍ dations ◷ 2025-05-02 05:41:32 #TSP
行商问题(最短路径问题)(英语:travelling salesman problem, TSP)是这样一个问题:给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起始城市的最短回路。它是组合优化中的一个NP困难问题,在运筹学和理论计算机科学中非常重要。TSP是旅行购买者问题(英语:travelling purchaser problem)与车辆路径问题的一种特殊情况。作为计算复杂性理论中的一个典型的判定性问题,TSP的一个版本是给定一个图和长度 L,要求回答图中是否存在比 L 短的回路(英语:circuit或tour)。该问题被划分为NP完全问题。已知TSP算法最坏情况下的时间复杂度随着城市数量的增多而成超多项式(可能是指数(英语:Exponential time hypothesis))级别增长。问题在1930年首次被形式化,并且是在最优化中研究最深入的问题之一。许多优化方法都用它作为一个基准。尽管问题在计算上很困难,但已经有了大量的启发式和精确方法,因此可以完全求解城市数量上万的实例,并且甚至能在误差1%范围内估计上百万个城市的问题。甚至纯粹形式的TSP都有若干应用,如企划、物流、芯片制造。稍作修改,就是DNA测序等许多领域的一个子问题。在这些应用中,“城市”的概念用来表示客户、焊接点或DNA片段,而“距离”的概念表示旅行时间或成本或DNA片段之间的相似性度量。TSP还用在天文学中,观察很多源的天文学家希望减少在源之间转动望远镜的时间。许多应用(如资源或时间窗口有限)中,可能会加入额外的约束。可以用无向加权图来对TSP建模,则城市是图的顶点,道路是图的边,道路的距离就是该边的长度。它是起点和终点都在一个特定顶点,访问每个顶点恰好一次的最小化问题。通常,该模型是一个完全图(即每对顶点由一条边连接)。如果两个城市之间不存在路径,则增加一条非常长的边就可以完成图,而不影响计算最优回路。在对称TSP问题中,两座城市之间来回的距离是相等的,形成一个无向图。这种对称性将解的数量减少了一半。在非对称TSP问题中,可能不是双向的路径都存在,或是来回的距离不同,形成了有向图。交通事故、单行道和出发与到达某些城市机票价格不同等都是打破这种对称性的例子。单钻头的运动可以看成是典型的TSP问题。TSP可以用整数线性规划来形式化。 用数字 0, ..., n 标记这些城市(打孔位置),并定义:对于 i = 0, ..., n,令
u
i
{displaystyle u_{i}}
为一人工变量,最后把
c
i
j
{displaystyle c_{ij}}
作为从城市 i 到 j 的距离。那么TSP可以写成下面的整数线性规划问题:第一组等式要求每个城市都能另一个城市前来,而第二组等式要求每个城市都能出发。最后的约束迫使覆盖所有城市的路径只有一条,而不是两条或者多条分散的路径在一起覆盖的。要证明这一点,下面会去证 (1)每个可行解包含只有一条封闭城市序列,以及(2)对于每条覆盖所有城市的单独路径,虚拟变量
u
i
{displaystyle u_{i}}
有值可以满足约束。证明可行解中的每个子回路经过0号城市(注意到等式保证了只有一条这样的路径),就能证明所有可行解只包含一个封闭城市序列。对于若我们对所有
x
i
j
=
1
{displaystyle x_{ij}=1}
对应的不等式求和的话,对 k 步不经过0号城市的任何子回路,我们得到:这构成矛盾。必须证明对每个覆盖所有城市的单独回路,虚拟变量
u
i
{displaystyle u_{i}}
有值可以满足约束。为了不失一般性,定义起始点为0号城市。如果在第 t 步访问城市 i 后 (i, t = 1, 2, ..., n) 选取
u
i
=
t
{displaystyle u_{i}=t}
。则由于
u
i
{displaystyle u_{i}}
不大于 n 而
u
j
{displaystyle u_{j}}
不小于1;因此,每当
x
i
j
=
0
{displaystyle x_{ij}=0}
时满足约束。对于
x
i
j
=
1
{displaystyle x_{ij}=1}
,我们有:满足约束。
相关
- 鱼骨图石川图(Ishikawa Diagram),又称因果图、关键要因图、要因分析图、鱼骨图(Fishbone Diagram),是用图解展示一定事件的各种原因的方法,是由日本学者石川馨(Kaoru Ishikawa)创立的因果模
- 脯氨酸脯氨酸(Proline,缩写为Pro 或P )是一个α-氨基酸,20个DNA编码的其中之一。其对应密码子为CCU,CCC,CCA和CCG。脯氨酸不是一种必需氨基酸,人体可以自行合成。在20个蛋白质形成氨基酸
- 长轴半长轴是几何学中的名词,用来描述椭圆和双曲线的维度。与之对应的就是长轴,半长轴为长轴的一半,一般描述椭圆的最长的直径。一个椭圆的长轴是内部最长的直径,他会通过中心和两个
- 织丝植物门Nematothalaceae:Nematophytaceae:织丝植物门(Nematophytes)是一个复系的陆地植物门,包含一些仅有化石记录的藻类, 历史可追溯至上志留纪。 模式属织丝体属(Nematothallus)首次描
- 古希腊语音系古希腊语语音系统是对古希腊语的语音或发音的研究。由于时间的流逝,古希腊语的原始发音像所有古代语言一样永远不能绝对确定地获知了。语言学重构在过去受到广泛的争论,但是现
- 爱德华时代爱德华时代(Edwardian era或Edwardian period)指1901年至1910年英国国王爱德华七世在位的时期。爱德华时代和维多利亚时代中后期被认为是大英帝国的黄金时代。维多利亚女王190
- 氢氧根氢氧离子,旧称沎,化学符号为OH-。其中氢和氧之间以共价键连接,整体带一单位的负电荷。常常与不同的元素组成氢氧化物。一个氧原子和一个氢原子以共价键结合之后,通常以两种方式
- 性别选择人类的性别选择的普遍是为确保“家族平衡”。现代科学技术许可选择婴孩性别,有几个可实行时间阶段:胚胎植入前,胚胎植入后,或在分娩时实行。胚胎植入前的性别选择,主要有两个方案
- 周向宇周向宇(1965年3月-),中国数学家。生于郴州,原籍洞口县。1985年毕业于湘潭大学数学系。现任中国科学院数学与系统科学研究院研究员。1990年获得钟家庆数学奖。2002年获得陈省身数
- 性幻想性幻想,或称意淫,是人通过大脑想象某种动作或画面等来使自己性兴奋的方式,通常透过成人漫画、色情片及色情小说、情色文学等媒介。性幻想亦包括主观臆想的性行为或性接触。性幻