TSP

✍ dations ◷ 2025-07-07 13:49:14 #TSP
行商问题(最短路径问题)(英语:travelling salesman problem, TSP)是这样一个问题:给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起始城市的最短回路。它是组合优化中的一个NP困难问题,在运筹学和理论计算机科学中非常重要。TSP是旅行购买者问题(英语:travelling purchaser problem)与车辆路径问题的一种特殊情况。作为计算复杂性理论中的一个典型的判定性问题,TSP的一个版本是给定一个图和长度 L,要求回答图中是否存在比 L 短的回路(英语:circuit或tour)。该问题被划分为NP完全问题。已知TSP算法最坏情况下的时间复杂度随着城市数量的增多而成超多项式(可能是指数(英语:Exponential time hypothesis))级别增长。问题在1930年首次被形式化,并且是在最优化中研究最深入的问题之一。许多优化方法都用它作为一个基准。尽管问题在计算上很困难,但已经有了大量的启发式和精确方法,因此可以完全求解城市数量上万的实例,并且甚至能在误差1%范围内估计上百万个城市的问题。甚至纯粹形式的TSP都有若干应用,如企划、物流、芯片制造。稍作修改,就是DNA测序等许多领域的一个子问题。在这些应用中,“城市”的概念用来表示客户、焊接点或DNA片段,而“距离”的概念表示旅行时间或成本或DNA片段之间的相似性度量。TSP还用在天文学中,观察很多源的天文学家希望减少在源之间转动望远镜的时间。许多应用(如资源或时间窗口有限)中,可能会加入额外的约束。可以用无向加权图来对TSP建模,则城市是图的顶点,道路是图的边,道路的距离就是该边的长度。它是起点和终点都在一个特定顶点,访问每个顶点恰好一次的最小化问题。通常,该模型是一个完全图(即每对顶点由一条边连接)。如果两个城市之间不存在路径,则增加一条非常长的边就可以完成图,而不影响计算最优回路。在对称TSP问题中,两座城市之间来回的距离是相等的,形成一个无向图。这种对称性将解的数量减少了一半。在非对称TSP问题中,可能不是双向的路径都存在,或是来回的距离不同,形成了有向图。交通事故、单行道和出发与到达某些城市机票价格不同等都是打破这种对称性的例子。单钻头的运动可以看成是典型的TSP问题。TSP可以用整数线性规划来形式化。 用数字 0, ..., n 标记这些城市(打孔位置),并定义:对于 i = 0, ..., n,令 u i {displaystyle u_{i}} 为一人工变量,最后把 c i j {displaystyle c_{ij}} 作为从城市 i 到 j 的距离。那么TSP可以写成下面的整数线性规划问题:第一组等式要求每个城市都能另一个城市前来,而第二组等式要求每个城市都能出发。最后的约束迫使覆盖所有城市的路径只有一条,而不是两条或者多条分散的路径在一起覆盖的。要证明这一点,下面会去证 (1)每个可行解包含只有一条封闭城市序列,以及(2)对于每条覆盖所有城市的单独路径,虚拟变量 u i {displaystyle u_{i}} 有值可以满足约束。证明可行解中的每个子回路经过0号城市(注意到等式保证了只有一条这样的路径),就能证明所有可行解只包含一个封闭城市序列。对于若我们对所有 x i j = 1 {displaystyle x_{ij}=1} 对应的不等式求和的话,对 k 步不经过0号城市的任何子回路,我们得到:这构成矛盾。必须证明对每个覆盖所有城市的单独回路,虚拟变量 u i {displaystyle u_{i}} 有值可以满足约束。为了不失一般性,定义起始点为0号城市。如果在第 t 步访问城市 i 后 (i, t = 1, 2, ..., n) 选取 u i = t {displaystyle u_{i}=t} 。则由于 u i {displaystyle u_{i}} 不大于 n 而 u j {displaystyle u_{j}} 不小于1;因此,每当 x i j = 0 {displaystyle x_{ij}=0} 时满足约束。对于 x i j = 1 {displaystyle x_{ij}=1} ,我们有:满足约束。

相关

  • 指甲指(趾)甲,亦称指(趾)盖、指(趾)甲盖、指(趾)头盖等,分为手指甲(简称手甲)或脚趾甲(简称脚甲),是哺乳类动物长于肢体指前端的由皮肤角质层硬化的一层硬物,指(趾)甲的作用是保护末节指腹避免受损
  • 上流式厌氧污泥床上流式厌氧污泥床反应器(英文:Up-flow Anaerobic Sludge Blanket, UASB)是一种处理污水的厌氧生物方法,于1977年由荷兰Lettinga教授发明。污水自下而上通过UASB。反应器底部有一
  • 液体液体(英语:Liquid)是物质的四个基本状态之一(其它状态有固体、气体、等离子体),没有确定的形状,但有一定体积,具有移动与转动等运动性。液体是由经分子间作用力结合在一起的微小振动
  • 威讯威瑞森通信(Verizon Communications(/vəˈraɪzən/),NYSE:VZ),是美国一家主要电信公司,全球领先的宽带和电信服务提供商,道琼斯30种工业平均指数组成之一。公司总部位于纽约市,主要
  • 糖合成代谢同化作用,又称为合成代谢,是指生物体利用能量将小分子合成为大分子的一系列代谢途径。这些反应需要能量,也被称为吸能过程(endergonic process)。将代谢过程分类的一种方式,无论是
  • 认知功能障碍发展障碍、发展迟缓(Developmental disorders),也称心理发展障碍,是一类儿童学习障碍和相关的发育障碍的总称。其包含特殊性发育障碍和广泛性发育障碍。该自闭症关联团体组织的
  • Bsub2/subSsub3/sub硫化硼是一种无机化合物,化学式为B2S3。它曾在“高科技”玻璃与制备有机硫化合物方面受到重视。和硫化硅、硫化磷一样,硫化硼可以和水(或者潮湿的空气)反应,放出硫化氢。因此,硫化
  • 德国投降欧战胜利纪念日,美国以及西欧国家定于每年的5月8日,俄罗斯等东欧国家定于每年的5月9日。以纪念1945年5月8日纳粹德国在柏林正式签订投降书,宣布在第二次世界大战中无条件投降。
  • 威尔弗里德·劳雷尔大学坐标:43°28′31.21″N 80°31′38.08″W / 43.4753361°N 80.5272444°W / 43.4753361; -80.5272444威尔弗里德·劳雷尔大学(Wilfrid Laurier University,又译作伟佛罗利亚大
  • 大东文化艺术中心大东文化艺术中心,位于高雄市凤山区大东国小校地,占地4.3公顷,大东国小转型为精致型迷你艺术小学。艺术中心涵盖800席多功能演艺厅和半户外剧场,共有演艺厅、展览馆、艺术教育中