TSP

✍ dations ◷ 2025-12-07 22:46:05 #TSP
行商问题(最短路径问题)(英语:travelling salesman problem, TSP)是这样一个问题:给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起始城市的最短回路。它是组合优化中的一个NP困难问题,在运筹学和理论计算机科学中非常重要。TSP是旅行购买者问题(英语:travelling purchaser problem)与车辆路径问题的一种特殊情况。作为计算复杂性理论中的一个典型的判定性问题,TSP的一个版本是给定一个图和长度 L,要求回答图中是否存在比 L 短的回路(英语:circuit或tour)。该问题被划分为NP完全问题。已知TSP算法最坏情况下的时间复杂度随着城市数量的增多而成超多项式(可能是指数(英语:Exponential time hypothesis))级别增长。问题在1930年首次被形式化,并且是在最优化中研究最深入的问题之一。许多优化方法都用它作为一个基准。尽管问题在计算上很困难,但已经有了大量的启发式和精确方法,因此可以完全求解城市数量上万的实例,并且甚至能在误差1%范围内估计上百万个城市的问题。甚至纯粹形式的TSP都有若干应用,如企划、物流、芯片制造。稍作修改,就是DNA测序等许多领域的一个子问题。在这些应用中,“城市”的概念用来表示客户、焊接点或DNA片段,而“距离”的概念表示旅行时间或成本或DNA片段之间的相似性度量。TSP还用在天文学中,观察很多源的天文学家希望减少在源之间转动望远镜的时间。许多应用(如资源或时间窗口有限)中,可能会加入额外的约束。可以用无向加权图来对TSP建模,则城市是图的顶点,道路是图的边,道路的距离就是该边的长度。它是起点和终点都在一个特定顶点,访问每个顶点恰好一次的最小化问题。通常,该模型是一个完全图(即每对顶点由一条边连接)。如果两个城市之间不存在路径,则增加一条非常长的边就可以完成图,而不影响计算最优回路。在对称TSP问题中,两座城市之间来回的距离是相等的,形成一个无向图。这种对称性将解的数量减少了一半。在非对称TSP问题中,可能不是双向的路径都存在,或是来回的距离不同,形成了有向图。交通事故、单行道和出发与到达某些城市机票价格不同等都是打破这种对称性的例子。单钻头的运动可以看成是典型的TSP问题。TSP可以用整数线性规划来形式化。 用数字 0, ..., n 标记这些城市(打孔位置),并定义:对于 i = 0, ..., n,令 u i {displaystyle u_{i}} 为一人工变量,最后把 c i j {displaystyle c_{ij}} 作为从城市 i 到 j 的距离。那么TSP可以写成下面的整数线性规划问题:第一组等式要求每个城市都能另一个城市前来,而第二组等式要求每个城市都能出发。最后的约束迫使覆盖所有城市的路径只有一条,而不是两条或者多条分散的路径在一起覆盖的。要证明这一点,下面会去证 (1)每个可行解包含只有一条封闭城市序列,以及(2)对于每条覆盖所有城市的单独路径,虚拟变量 u i {displaystyle u_{i}} 有值可以满足约束。证明可行解中的每个子回路经过0号城市(注意到等式保证了只有一条这样的路径),就能证明所有可行解只包含一个封闭城市序列。对于若我们对所有 x i j = 1 {displaystyle x_{ij}=1} 对应的不等式求和的话,对 k 步不经过0号城市的任何子回路,我们得到:这构成矛盾。必须证明对每个覆盖所有城市的单独回路,虚拟变量 u i {displaystyle u_{i}} 有值可以满足约束。为了不失一般性,定义起始点为0号城市。如果在第 t 步访问城市 i 后 (i, t = 1, 2, ..., n) 选取 u i = t {displaystyle u_{i}=t} 。则由于 u i {displaystyle u_{i}} 不大于 n 而 u j {displaystyle u_{j}} 不小于1;因此,每当 x i j = 0 {displaystyle x_{ij}=0} 时满足约束。对于 x i j = 1 {displaystyle x_{ij}=1} ,我们有:满足约束。

相关

  • 替加环素替加环素(英语:Tigecycline,亦称丁甘米诺环素与老虎霉素,研发代号为GAR-936)是一种静脉给药的广谱甘氨酰环肽类抗生素,属于第三代四环素类抗生素 。它主要针对耐药细菌如耐甲氧西
  • 活性污泥法活性污泥法是一种污水的好氧生物处理法,由英国的克拉克(Clark)和盖奇(Gage)于1912年发明。如今,活性污泥法及其衍生改良工艺是处理城市污水最广泛使用的方法。它能从污水中去除溶
  • 右心室右心室是人类心脏四个心室之一,而四心室则包括两个心房和两个心室。右心室会接收由右心房带来的缺氧血,并把缺氧血运送到肺动脉。右心室有出入二口,入口即右心房出口,其边缘附有
  • 转诊转诊(英语:referral)是指将病患从一个诊所或临床医生(英语:clinician)转送到其他医疗机构。像初级医疗或二级医疗的病患可能会依其病况需要,送到三级医疗机构。
  • 王制罗马王政时代或罗马王国(拉丁语:REGNVM ROMANVM)是指前753年到前509年这一时期的古罗马,此时的罗马是一个君主制国家,尚未建立共和国。罗马王国时期,氏族部落组织尚完整存在,统治阶
  • 比利时高卢比利时高卢(Gallia Belgica)是古罗马地区的称呼,位于今日的尼德兰、比利时、卢森堡以及法国东北、德国的西部地方。今天的比利时国名就是源自于此一古称,虽然罗马时期对比利时所
  • CrOsub3/sub三氧化铬(化学式:CrO3),通常呈暗红色斜方结晶,可溶于水、醇、硫酸和乙醚,但不溶于丙酮(丙酮遇到三氧化铬会发生剧烈爆炸),容易潮解。溶于水生成铬酸。具强氧化性。三氧化铬、硫酸和丙
  • 起飞起飞是指航空器在飞行过程中离开地面,进入空中的阶段。对于水平起飞的航空器而言,起飞一般需要在跑道上滑行(rolling),在到达一定速度及升力后再起飞。若是航空气球、直升机或是
  • 罗马皇帝罗马皇帝是罗马帝国时期的最高头衔,是身兼国家元首和政府首脑的最高领导人。在欧洲历史中,皇帝(拉丁语:Imperator;英语:emperor)源自于古罗马时期,音译为“英白拉多”,原意是统帅,源自
  • 高雄都会公园高雄都会公园位于高雄市楠梓区,总面积共100公顷,横跨至桥头区境内,是台湾首座都会公园,也为台湾面积次大的都市公园, 次于面积280公顷的位于台东市的台东森林公园。高雄都会公园