首页 >
狄拉克方程
✍ dations ◷ 2025-12-03 10:42:14 #狄拉克方程
理论物理中,相对于薛定谔方程之于非相对论量子力学,狄拉克方程是相对论量子力学的一项描述自旋-½粒子的波函数方程,由英国物理学家保罗·狄拉克于1928年建立,不带矛盾地同时遵守了狭义相对论与量子力学两者的原理,实则为薛定谔方程的洛伦兹协变式。这条方程预言了反粒子的存在,随后1932年由卡尔·安德森发现了正电子(positron)而证实。(
i
∂
/
−
m
)
ψ
=
0
{displaystyle (i{partial !!!{big /}}-m)psi =0,}带有自旋-½的自由粒子的狄拉克方程的形式如下:其中
m
{displaystyle m,}
是自旋-½粒子的质量,
x
{displaystyle mathbf {x} }
与
t
{displaystyle t}
分别是空间和时间的坐标。狄拉克所希望建立的是一个同时具有洛伦兹协变性和薛定谔方程形式的波方程,并且这个方程需要确保所导出的概率密度为正值,而不是像克莱因-戈尔登方程那样存在缺乏物理意义的负值。考虑无场势自由粒子的薛定谔方程:薛定谔方程采用的时间项为一阶导数,而空间项为二阶导数,因此不具有洛伦兹协变性。若要符合洛伦兹协变性,很自然地需建构一具有空间项一阶导数的哈密顿量。而动量算符恰好是空间一阶导数。将动量算符代入式子中,从而得到i
ℏ
∂
ψ
(
x
,
t
)
∂
t
=
[
ℏ
c
i
(
α
1
∂
∂
x
1
+
α
2
∂
∂
x
2
+
α
3
∂
∂
x
3
)
+
β
m
c
2
]
ψ
(
x
,
t
)
≡
H
ψ
(
x
,
t
)
{displaystyle ihbar {frac {partial psi (mathbf {x} ,t)}{partial t}}=leftpsi (mathbf {x} ,t)equiv Hpsi (mathbf {x} ,t)}亦可以矢量符号写为:其中的系数
α
i
{displaystyle alpha _{i}}
和
β
{displaystyle beta }
不能是简单的常数,否则即使对于简单的空间旋转变换,这个方程也不是洛伦兹协变的。因此狄拉克假设这些系数都是N×N阶矩阵以满足洛伦兹协变性。如果系数
α
i
{displaystyle alpha _{i}}
是矩阵,那么波函数
ψ
(
x
,
t
)
{displaystyle psi (mathbf {x} ,t)}
也不能是简单的标量场,而只能是N×1阶列矢量狄拉克把这些列矢量叫做旋量(Spinor),这些旋量所决定的概率密度总是正值同时,这些旋量的每一个标量分量
ψ
i
(
x
,
t
)
{displaystyle psi _{i}(mathbf {x} ,t)}
需要满足标量场的克莱因-戈尔登方程。比较两者可以得出系数矩阵需要满足如下关系:满足以上条件的系数矩阵
α
{displaystyle alpha }
和
β
{displaystyle beta }
本征值只可以取±1,并且要求是无迹的,即矩阵的对角线元素和为零。这样,矩阵的阶数N只能为偶数,即包含有相等数量的+1和-1。满足条件的最小偶数是4而不是2,原因是存在3个泡利矩阵。也可以用狭义相对论惯用四维矩阵来理解,如四动量。在不同基中这些系数矩阵有不同形式,最常见的形式为:这里
σ
i
{displaystyle sigma _{i}}
即为泡利矩阵:因此系数矩阵
α
{displaystyle alpha }
和
β
{displaystyle beta }
可进一步写为:按照量子场论的自然单位制习惯,设
ℏ
=
c
=
1
{displaystyle hbar =c=1}
,狄拉克方程可写为:定义四个反对易矩阵γμ,μ=0,1,2,3(称为狄拉克矩阵)。其反对易关系为:利用上式可证明因此狄拉克方程可写成:i
ℏ
γ
μ
∂
μ
ψ
−
m
c
ψ
=
0
{displaystyle ihbar gamma ^{mu }partial _{mu }psi -mcpsi =0}采取自然单位制习惯
ℏ
=
c
=
1
{displaystyle hbar =c=1}
,则可将狄拉克方程写成:与上面给出的 α, β相对应,可以选择:若采用费曼斜线标记,比如偏微分符号
∂
/
{displaystyle {partial !!!{big /}}}
(英语念作d-slash);其将狄拉克矩阵与各分量做乘积求和的计算,合并为一标有斜线之符号:可使狄拉克方程变成:若同时采用费曼斜线符号及自然单位制.mw-parser-output .serif{font-family:Times,serif}ħ = c = 1,狄拉克方程可写成一极为简单的形式:(
i
∂
/
−
m
)
ψ
=
0
{displaystyle (i{partial !!!{big /}}-m)psi =0,}以狄拉克公式来解释能量阶,会发现每个电子能级会有相对的负能级,但是实验上普通电子无法带有负能量,因此狄拉克假设负能量阶已被无限的负能电子海占据,所以观测的电子无法进入负能级。这假说有许多疑点,尤其是无限的电子海其实有接受更多电子的能级,所以无法防止负能级电子的产生。
相关
- 出生出生,或者出世,是指令后代降生于世的行为或过程。在哺乳动物中,这一过程由荷尔蒙控制,使得子宫壁肌肉收缩,并在胎儿具备呼吸、进食能力的时候将其排出。部分物种的子嗣较为早成(英
- 替莫唑胺替莫唑胺是一种口服化疗药物(属于烷基化剂),用于治疗某些脑癌,如成人恶性神经胶质瘤和恶性黑色素瘤。该药物由英国伯明翰阿斯顿大学的教授马尔寇姆史蒂文斯(英语:Malcolm Stevens)
- 酒精发酵酒精发酵是指微生物通过发酵过程产出酒精的化学过程。酵母以及其它微生物经过发酵作用,反应物中的糖,如葡萄糖、果糖和蔗糖转化成能量、乙醇和二氧化碳,但根据反应物的不同,微生
- 异丙嗪盐酸异丙嗪(英语:Promethazine,又名盐酸普鲁米近(Promethazine Hydrochloride)或非那根(Phenergan))是一种常见的止咳药物,为第一代抗组织胺药,能竞争性阻断组胺H1受体,对抗组胺所
- 宇宙空间外层空间,亦称外太空、宇宙空间,简称空间、外空或太空(英语:outer space),指的是地球大气层及其他天体之外的虚空区域。与真空有所不同的是,外层空间含有密度很低的物质,以等离子态
- 航天飞机任务列表name = 'Aero', description = '航空太空科技(航空航天科技)', content = {{ type = 'text', text = [=[本页面没有类似于NoteTA的数量限制。 请自行修改分类名。在NoteTA样板
- 抗腐蚀金属抗腐蚀金属(英语:Noble metal),又称惰性金属,是抗氧化和腐蚀能力极强的金属,一般在地壳中含量稀少;当中包括一些贵金属:抗腐蚀金属不会和通常的酸起反应,但有些稀有金属会溶于王水。
- 俄克拉荷马大学俄克拉何马大学(University of Oklahoma),成立于1890年,位于美国俄克拉何马州诺曼,学校采学期制,大学部约有20,000名学生,是美国中南部地区有名的大学,所接受的各方捐赠总额,至2008年
- 康健杂志《康健杂志》创刊于1998年,隶属天下杂志群,一本健康生活类月刊,推广健康常识,主题包括医疗趋势新知、健康饮食、休闲品味、心灵关系等领域,并延展到对环境、政策等议题。杂志曾策
- 加拿大行政区划加拿大的行政区划是由10个省(Province)和3个地区/领地(英语:territory;法语:territoire)所组成的。省和地区的主要不同的地方在于省是根据宪法法令所设立的,但地区是据联邦法律所设
