狄拉克方程

✍ dations ◷ 2025-06-07 20:28:33 #狄拉克方程
理论物理中,相对于薛定谔方程之于非相对论量子力学,狄拉克方程是相对论量子力学的一项描述自旋-½粒子的波函数方程,由英国物理学家保罗·狄拉克于1928年建立,不带矛盾地同时遵守了狭义相对论与量子力学两者的原理,实则为薛定谔方程的洛伦兹协变式。这条方程预言了反粒子的存在,随后1932年由卡尔·安德森发现了正电子(positron)而证实。( i ∂ / − m ) ψ = 0 {displaystyle (i{partial !!!{big /}}-m)psi =0,}带有自旋-½的自由粒子的狄拉克方程的形式如下:其中 m {displaystyle m,} 是自旋-½粒子的质量, x {displaystyle mathbf {x} } 与 t {displaystyle t} 分别是空间和时间的坐标。狄拉克所希望建立的是一个同时具有洛伦兹协变性和薛定谔方程形式的波方程,并且这个方程需要确保所导出的概率密度为正值,而不是像克莱因-戈尔登方程那样存在缺乏物理意义的负值。考虑无场势自由粒子的薛定谔方程:薛定谔方程采用的时间项为一阶导数,而空间项为二阶导数,因此不具有洛伦兹协变性。若要符合洛伦兹协变性,很自然地需建构一具有空间项一阶导数的哈密顿量。而动量算符恰好是空间一阶导数。将动量算符代入式子中,从而得到i ℏ ∂ ψ ( x , t ) ∂ t = [ ℏ c i ( α 1 ∂ ∂ x 1 + α 2 ∂ ∂ x 2 + α 3 ∂ ∂ x 3 ) + β m c 2 ] ψ ( x , t ) ≡ H ψ ( x , t ) {displaystyle ihbar {frac {partial psi (mathbf {x} ,t)}{partial t}}=leftpsi (mathbf {x} ,t)equiv Hpsi (mathbf {x} ,t)}亦可以矢量符号写为:其中的系数 α i {displaystyle alpha _{i}} 和 β {displaystyle beta } 不能是简单的常数,否则即使对于简单的空间旋转变换,这个方程也不是洛伦兹协变的。因此狄拉克假设这些系数都是N×N阶矩阵以满足洛伦兹协变性。如果系数 α i {displaystyle alpha _{i}} 是矩阵,那么波函数 ψ ( x , t ) {displaystyle psi (mathbf {x} ,t)} 也不能是简单的标量场,而只能是N×1阶列矢量狄拉克把这些列矢量叫做旋量(Spinor),这些旋量所决定的概率密度总是正值同时,这些旋量的每一个标量分量 ψ i ( x , t ) {displaystyle psi _{i}(mathbf {x} ,t)} 需要满足标量场的克莱因-戈尔登方程。比较两者可以得出系数矩阵需要满足如下关系:满足以上条件的系数矩阵 α {displaystyle alpha } 和 β {displaystyle beta } 本征值只可以取±1,并且要求是无迹的,即矩阵的对角线元素和为零。这样,矩阵的阶数N只能为偶数,即包含有相等数量的+1和-1。满足条件的最小偶数是4而不是2,原因是存在3个泡利矩阵。也可以用狭义相对论惯用四维矩阵来理解,如四动量。在不同基中这些系数矩阵有不同形式,最常见的形式为:这里 σ i {displaystyle sigma _{i}} 即为泡利矩阵:因此系数矩阵 α {displaystyle alpha } 和 β {displaystyle beta } 可进一步写为:按照量子场论的自然单位制习惯,设 ℏ = c = 1 {displaystyle hbar =c=1} ,狄拉克方程可写为:定义四个反对易矩阵γμ,μ=0,1,2,3(称为狄拉克矩阵)。其反对易关系为:利用上式可证明因此狄拉克方程可写成:i ℏ γ μ ∂ μ ψ − m c ψ = 0 {displaystyle ihbar gamma ^{mu }partial _{mu }psi -mcpsi =0}采取自然单位制习惯 ℏ = c = 1 {displaystyle hbar =c=1} ,则可将狄拉克方程写成:与上面给出的 α, β相对应,可以选择:若采用费曼斜线标记,比如偏微分符号 ∂ / {displaystyle {partial !!!{big /}}} (英语念作d-slash);其将狄拉克矩阵与各分量做乘积求和的计算,合并为一标有斜线之符号:可使狄拉克方程变成:若同时采用费曼斜线符号及自然单位制.mw-parser-output .serif{font-family:Times,serif}ħ = c = 1,狄拉克方程可写成一极为简单的形式:( i ∂ / − m ) ψ = 0 {displaystyle (i{partial !!!{big /}}-m)psi =0,}以狄拉克公式来解释能量阶,会发现每个电子能级会有相对的负能级,但是实验上普通电子无法带有负能量,因此狄拉克假设负能量阶已被无限的负能电子海占据,所以观测的电子无法进入负能级。这假说有许多疑点,尤其是无限的电子海其实有接受更多电子的能级,所以无法防止负能级电子的产生。

相关

  • 未到第三阶段临床试验(英语:Clinical trial)是一种根据研究方案利用已上市药物或安慰剂作为对照组的方式,对药物或其他医学治疗在受试者身上进行比较测试的过程。在临床试验中,研究者要先决定
  • 新冠肺炎新型冠状病毒肺炎(英语:Novel coronavirus pneumonia),简称新冠肺炎,即由新型冠状病毒所引起的肺炎。可以指:
  • 亚轨道亚轨道太空飞行是进入了太空,但因其飞行轨迹与大气层或地球表面相交而无法完成一周轨道飞行的太空飞行。通常亚轨道飞行是以火箭达成,但Space Gun也曾在实验中达成过。一个常
  • 870110 数学 120 信息科学与系统科学 130 力学 140 物理学 150 化学 160 天文学 170 地球科学 180 生物学210 农学 220 林学 230 畜牧、兽医科学 240 水产学310 
  • 罗马尼亚列伊罗马尼亚列伊(罗马尼亚语:Leu românesc,复数为Lei românesc,ISO 4217代码:RON,数字代码:946),是罗马尼亚官方货币,辅币名为巴尼(bani),1列伊=100巴尼。17世纪时,今日罗马尼亚地区通行荷
  • 聚醋酸乙烯酯聚醋酸乙烯酯(Polyvinyl acetate,也称作聚乙酸乙烯酯,简称PVA、PVAc)是一种有弹性的合成聚合物。 聚醋酸乙烯酯是通过醋酸乙烯酯(VAM)的聚合而制备的。聚合物的部分或全部水解用于
  • 信义房屋信义房屋为台湾房屋中介公司,1981年由周俊吉创办,其时政府尚未核准房屋中介公司营业,因此以“信义代书事务所”提供房屋买卖中介服务。至1987年正式成立“信义房屋中介股份有限
  • 专利池专利池是由多个专利权人之间达成协议,互相交叉许可或共同向第三方许可其专利的联营组织或几何体。如对MPEG2技术标准进行管理的MPEG2 LA就是著名的专利池,有哥伦比亚大学、富
  • 高美医护管理专科学校1968年创校 2003年改制为专科学校高美医护管理专科学校是一间位于台湾高雄市美浓区的护理专科学校,曾有4个学科。已于2018年8月1日停止招生。公车(高雄市公车):高美医专: 80
  • 天使薇拉卓克《维拉·德雷克》(Vera Drake)是一套2005年的英国剧情片,由麦克·李执导,伊美黛·史道顿等主演。电影以1950年代,堕胎仍是犯法的英国为背景,描述一名工人阶级的伦敦女士帮助其他女