首页 >
狄拉克方程
✍ dations ◷ 2025-05-16 05:46:28 #狄拉克方程
理论物理中,相对于薛定谔方程之于非相对论量子力学,狄拉克方程是相对论量子力学的一项描述自旋-½粒子的波函数方程,由英国物理学家保罗·狄拉克于1928年建立,不带矛盾地同时遵守了狭义相对论与量子力学两者的原理,实则为薛定谔方程的洛伦兹协变式。这条方程预言了反粒子的存在,随后1932年由卡尔·安德森发现了正电子(positron)而证实。(
i
∂
/
−
m
)
ψ
=
0
{displaystyle (i{partial !!!{big /}}-m)psi =0,}带有自旋-½的自由粒子的狄拉克方程的形式如下:其中
m
{displaystyle m,}
是自旋-½粒子的质量,
x
{displaystyle mathbf {x} }
与
t
{displaystyle t}
分别是空间和时间的坐标。狄拉克所希望建立的是一个同时具有洛伦兹协变性和薛定谔方程形式的波方程,并且这个方程需要确保所导出的概率密度为正值,而不是像克莱因-戈尔登方程那样存在缺乏物理意义的负值。考虑无场势自由粒子的薛定谔方程:薛定谔方程采用的时间项为一阶导数,而空间项为二阶导数,因此不具有洛伦兹协变性。若要符合洛伦兹协变性,很自然地需建构一具有空间项一阶导数的哈密顿量。而动量算符恰好是空间一阶导数。将动量算符代入式子中,从而得到i
ℏ
∂
ψ
(
x
,
t
)
∂
t
=
[
ℏ
c
i
(
α
1
∂
∂
x
1
+
α
2
∂
∂
x
2
+
α
3
∂
∂
x
3
)
+
β
m
c
2
]
ψ
(
x
,
t
)
≡
H
ψ
(
x
,
t
)
{displaystyle ihbar {frac {partial psi (mathbf {x} ,t)}{partial t}}=leftpsi (mathbf {x} ,t)equiv Hpsi (mathbf {x} ,t)}亦可以矢量符号写为:其中的系数
α
i
{displaystyle alpha _{i}}
和
β
{displaystyle beta }
不能是简单的常数,否则即使对于简单的空间旋转变换,这个方程也不是洛伦兹协变的。因此狄拉克假设这些系数都是N×N阶矩阵以满足洛伦兹协变性。如果系数
α
i
{displaystyle alpha _{i}}
是矩阵,那么波函数
ψ
(
x
,
t
)
{displaystyle psi (mathbf {x} ,t)}
也不能是简单的标量场,而只能是N×1阶列矢量狄拉克把这些列矢量叫做旋量(Spinor),这些旋量所决定的概率密度总是正值同时,这些旋量的每一个标量分量
ψ
i
(
x
,
t
)
{displaystyle psi _{i}(mathbf {x} ,t)}
需要满足标量场的克莱因-戈尔登方程。比较两者可以得出系数矩阵需要满足如下关系:满足以上条件的系数矩阵
α
{displaystyle alpha }
和
β
{displaystyle beta }
本征值只可以取±1,并且要求是无迹的,即矩阵的对角线元素和为零。这样,矩阵的阶数N只能为偶数,即包含有相等数量的+1和-1。满足条件的最小偶数是4而不是2,原因是存在3个泡利矩阵。也可以用狭义相对论惯用四维矩阵来理解,如四动量。在不同基中这些系数矩阵有不同形式,最常见的形式为:这里
σ
i
{displaystyle sigma _{i}}
即为泡利矩阵:因此系数矩阵
α
{displaystyle alpha }
和
β
{displaystyle beta }
可进一步写为:按照量子场论的自然单位制习惯,设
ℏ
=
c
=
1
{displaystyle hbar =c=1}
,狄拉克方程可写为:定义四个反对易矩阵γμ,μ=0,1,2,3(称为狄拉克矩阵)。其反对易关系为:利用上式可证明因此狄拉克方程可写成:i
ℏ
γ
μ
∂
μ
ψ
−
m
c
ψ
=
0
{displaystyle ihbar gamma ^{mu }partial _{mu }psi -mcpsi =0}采取自然单位制习惯
ℏ
=
c
=
1
{displaystyle hbar =c=1}
,则可将狄拉克方程写成:与上面给出的 α, β相对应,可以选择:若采用费曼斜线标记,比如偏微分符号
∂
/
{displaystyle {partial !!!{big /}}}
(英语念作d-slash);其将狄拉克矩阵与各分量做乘积求和的计算,合并为一标有斜线之符号:可使狄拉克方程变成:若同时采用费曼斜线符号及自然单位制.mw-parser-output .serif{font-family:Times,serif}ħ = c = 1,狄拉克方程可写成一极为简单的形式:(
i
∂
/
−
m
)
ψ
=
0
{displaystyle (i{partial !!!{big /}}-m)psi =0,}以狄拉克公式来解释能量阶,会发现每个电子能级会有相对的负能级,但是实验上普通电子无法带有负能量,因此狄拉克假设负能量阶已被无限的负能电子海占据,所以观测的电子无法进入负能级。这假说有许多疑点,尤其是无限的电子海其实有接受更多电子的能级,所以无法防止负能级电子的产生。
相关
- 死水死水又称滞水,为不流动的水体,水体之所在地没有流通的出入口。形成死水之地包括路边的小凹地、花园中的泥泞,甚至人工制造的器皿皆能形成死水。严格来说,死海亦是死水的一种。死
- 量筒量筒(法语:éprouvette graduée,西班牙语:probeta,英语:graduated cylinder,德语:Messzylinder)是实验室里一种常见的用来测量液体体积的量器,圆筒壁上刻有容积量程,供使用者读取体积
- 半乳糖激酶半乳糖激酶(英语:Galactokinase)是一种催化α-D-半乳糖磷酸化为半乳糖-1-磷酸的磷酸转移酶,在此过程中消耗一分子ATP。半乳糖激酶催化Leloir途径(有机体中将α-D-半乳糖转化为葡
- 夏乐宫夏乐宫(Palais de Chaillot)位于法国巴黎十六区,隔塞纳河与艾菲尔铁塔相对。夏乐宫地区又称为特罗卡德罗(Trocadéro)。夏乐原是当地村庄的名称。特罗卡德罗是西班牙最南端加的斯
- 紫微大帝紫微大帝,全称中天紫微北极太皇大帝,道教的四御尊神之一,是斗姆元君的次子。为紫微垣的星君,道教认为,紫微垣位居苍天众星的正中,协助玉皇上帝掌控星斗、日月等,是众星之主。紫微大
- 奥尔塔若泽·曼努埃尔·拉莫斯·奥尔塔(José Manuel Ramos-Horta,1949年12月26日-),东帝汶政治家,日本法政大学名誉博士。先后担任过东帝汶外交部长、东帝汶总理、东帝汶总统,诺贝尔和平
- 亚欧大陆欧亚大陆或亚欧大陆是亚细亚洲大陆和欧罗巴洲大陆的合称。面积5473.8万平方公里。亚、欧二大陆单从地理学方面来归类应属同一个、地球表面面积最大的洲。亚洲与欧洲的分别主
- 天气谚语天气谚语是指民间流传的关于预测天气变化的词语。人类在千百年来一直想制造准确的天气预报。口述与笔记的历史充满韵文、轶事与谚语来指示明日天气是天朗气清还是风雨飘移。
- 科料客体 · 行为(作为 · 不作为) 危害结果 · 因果关系 · 犯罪主体 主观要件(故意 · 过失) 未遂 · 既遂 · 中止 · 预备阻却违法事由 正当防卫 · 紧急避难心神丧失
- 核四龙门核能发电站是位于台湾新北市贡寮区的核能发电站,因所在地名“龙门”而得名,由台湾电力公司兴建营运,为台湾第四座核能发电站,故原名第四核能发电站,2009年3月3日改为现名,其原