首页 >
狄拉克方程
✍ dations ◷ 2025-04-03 10:49:55 #狄拉克方程
理论物理中,相对于薛定谔方程之于非相对论量子力学,狄拉克方程是相对论量子力学的一项描述自旋-½粒子的波函数方程,由英国物理学家保罗·狄拉克于1928年建立,不带矛盾地同时遵守了狭义相对论与量子力学两者的原理,实则为薛定谔方程的洛伦兹协变式。这条方程预言了反粒子的存在,随后1932年由卡尔·安德森发现了正电子(positron)而证实。(
i
∂
/
−
m
)
ψ
=
0
{displaystyle (i{partial !!!{big /}}-m)psi =0,}带有自旋-½的自由粒子的狄拉克方程的形式如下:其中
m
{displaystyle m,}
是自旋-½粒子的质量,
x
{displaystyle mathbf {x} }
与
t
{displaystyle t}
分别是空间和时间的坐标。狄拉克所希望建立的是一个同时具有洛伦兹协变性和薛定谔方程形式的波方程,并且这个方程需要确保所导出的概率密度为正值,而不是像克莱因-戈尔登方程那样存在缺乏物理意义的负值。考虑无场势自由粒子的薛定谔方程:薛定谔方程采用的时间项为一阶导数,而空间项为二阶导数,因此不具有洛伦兹协变性。若要符合洛伦兹协变性,很自然地需建构一具有空间项一阶导数的哈密顿量。而动量算符恰好是空间一阶导数。将动量算符代入式子中,从而得到i
ℏ
∂
ψ
(
x
,
t
)
∂
t
=
[
ℏ
c
i
(
α
1
∂
∂
x
1
+
α
2
∂
∂
x
2
+
α
3
∂
∂
x
3
)
+
β
m
c
2
]
ψ
(
x
,
t
)
≡
H
ψ
(
x
,
t
)
{displaystyle ihbar {frac {partial psi (mathbf {x} ,t)}{partial t}}=leftpsi (mathbf {x} ,t)equiv Hpsi (mathbf {x} ,t)}亦可以矢量符号写为:其中的系数
α
i
{displaystyle alpha _{i}}
和
β
{displaystyle beta }
不能是简单的常数,否则即使对于简单的空间旋转变换,这个方程也不是洛伦兹协变的。因此狄拉克假设这些系数都是N×N阶矩阵以满足洛伦兹协变性。如果系数
α
i
{displaystyle alpha _{i}}
是矩阵,那么波函数
ψ
(
x
,
t
)
{displaystyle psi (mathbf {x} ,t)}
也不能是简单的标量场,而只能是N×1阶列矢量狄拉克把这些列矢量叫做旋量(Spinor),这些旋量所决定的概率密度总是正值同时,这些旋量的每一个标量分量
ψ
i
(
x
,
t
)
{displaystyle psi _{i}(mathbf {x} ,t)}
需要满足标量场的克莱因-戈尔登方程。比较两者可以得出系数矩阵需要满足如下关系:满足以上条件的系数矩阵
α
{displaystyle alpha }
和
β
{displaystyle beta }
本征值只可以取±1,并且要求是无迹的,即矩阵的对角线元素和为零。这样,矩阵的阶数N只能为偶数,即包含有相等数量的+1和-1。满足条件的最小偶数是4而不是2,原因是存在3个泡利矩阵。也可以用狭义相对论惯用四维矩阵来理解,如四动量。在不同基中这些系数矩阵有不同形式,最常见的形式为:这里
σ
i
{displaystyle sigma _{i}}
即为泡利矩阵:因此系数矩阵
α
{displaystyle alpha }
和
β
{displaystyle beta }
可进一步写为:按照量子场论的自然单位制习惯,设
ℏ
=
c
=
1
{displaystyle hbar =c=1}
,狄拉克方程可写为:定义四个反对易矩阵γμ,μ=0,1,2,3(称为狄拉克矩阵)。其反对易关系为:利用上式可证明因此狄拉克方程可写成:i
ℏ
γ
μ
∂
μ
ψ
−
m
c
ψ
=
0
{displaystyle ihbar gamma ^{mu }partial _{mu }psi -mcpsi =0}采取自然单位制习惯
ℏ
=
c
=
1
{displaystyle hbar =c=1}
,则可将狄拉克方程写成:与上面给出的 α, β相对应,可以选择:若采用费曼斜线标记,比如偏微分符号
∂
/
{displaystyle {partial !!!{big /}}}
(英语念作d-slash);其将狄拉克矩阵与各分量做乘积求和的计算,合并为一标有斜线之符号:可使狄拉克方程变成:若同时采用费曼斜线符号及自然单位制.mw-parser-output .serif{font-family:Times,serif}ħ = c = 1,狄拉克方程可写成一极为简单的形式:(
i
∂
/
−
m
)
ψ
=
0
{displaystyle (i{partial !!!{big /}}-m)psi =0,}以狄拉克公式来解释能量阶,会发现每个电子能级会有相对的负能级,但是实验上普通电子无法带有负能量,因此狄拉克假设负能量阶已被无限的负能电子海占据,所以观测的电子无法进入负能级。这假说有许多疑点,尤其是无限的电子海其实有接受更多电子的能级,所以无法防止负能级电子的产生。
相关
- 嗜中性球中性粒细胞(英语:Neutrophil 或 Neutrocyte,或全称 Neutrophilic Granulocyte)亦称嗜中性粒细胞或嗜中性多核球,是血液白细胞的一种,也是哺乳动物血液中最主要的一种白细胞。中性
- 农业农业是美国的主要工业,同时美国也是一个粮食净出口国。根据2007年农业普查,美国有220万个农场,占地面积373万平方公里(9亿2200万英亩),平均每个农场占地169公顷(418英亩)。虽然每个
- 混沌传统宗教仪式:神明秘密社会:混沌,又写作浑沌,指混乱而没有秩序的状态。在哲学中,混沌指虚空,或者没有结构的均匀状态。在非线性科学中,“混沌”这个词的含义和本意相似但又不完全一
- AlexaAlexa Internet公司是亚马逊公司的一家子公司,总部位于加利福尼亚州旧金山。于1996年由布鲁斯特·卡勒及布鲁斯·吉里亚特创立。作为互联网档案馆的分支,受到杰奎琳·萨福拉的
- 毫米汞柱毫米汞柱(英语:Millimeter of mercury),符号为mmHg,是一种压力单位,等于一毫米高的水银柱对液柱底面产生的压力。一毫米汞柱为133.322387415帕斯卡,约为1托。。
- 显性基因在基因学中,显性(英语:dominance)是一个基因中一对等位基因之间的关系,其中一个等位基因的表型会表现出来,掩盖了同一基因座中另一个等位基因的表现。前面的等位基因称为显性基因,
- 滴定滴定(titration),在分析化学中是一种分析溶液成分的方法。将标准溶液逐滴加入被分析溶液中,用颜色变化、沉淀或电导率变化等来确定反应的终点。由于体积测定是滴定的关键,滴定分
- 距今距今(英语:Before Present,简称:BP),是一种用于考古学上的年代的标记法,用于表示放射性碳十四定年法所估测出之绝对年代。自1954年开始,学者初次制定一个以公元1950年为所有放射性碳
- 债务陷阱外交债务陷阱外交(Debt-trap diplomacy)是一种以债务为基础的双边外交关系(英语:Bilateralism)。其作法为债权国刻意的向另一国提出大量的货款,在债务国无法履行债务义务(多半是资产货
- 车田正美车田正美(1953年12月6日-)日本1980年代重要的男性漫画家,出生于东京都中央区,是周刊《少年Jump周刊》的台柱作者之一。以希腊神话为故事背景的漫画作品《圣斗士星矢》,成为20世纪8