狄拉克方程

✍ dations ◷ 2025-11-18 20:23:48 #狄拉克方程
理论物理中,相对于薛定谔方程之于非相对论量子力学,狄拉克方程是相对论量子力学的一项描述自旋-½粒子的波函数方程,由英国物理学家保罗·狄拉克于1928年建立,不带矛盾地同时遵守了狭义相对论与量子力学两者的原理,实则为薛定谔方程的洛伦兹协变式。这条方程预言了反粒子的存在,随后1932年由卡尔·安德森发现了正电子(positron)而证实。( i ∂ / − m ) ψ = 0 {displaystyle (i{partial !!!{big /}}-m)psi =0,}带有自旋-½的自由粒子的狄拉克方程的形式如下:其中 m {displaystyle m,} 是自旋-½粒子的质量, x {displaystyle mathbf {x} } 与 t {displaystyle t} 分别是空间和时间的坐标。狄拉克所希望建立的是一个同时具有洛伦兹协变性和薛定谔方程形式的波方程,并且这个方程需要确保所导出的概率密度为正值,而不是像克莱因-戈尔登方程那样存在缺乏物理意义的负值。考虑无场势自由粒子的薛定谔方程:薛定谔方程采用的时间项为一阶导数,而空间项为二阶导数,因此不具有洛伦兹协变性。若要符合洛伦兹协变性,很自然地需建构一具有空间项一阶导数的哈密顿量。而动量算符恰好是空间一阶导数。将动量算符代入式子中,从而得到i ℏ ∂ ψ ( x , t ) ∂ t = [ ℏ c i ( α 1 ∂ ∂ x 1 + α 2 ∂ ∂ x 2 + α 3 ∂ ∂ x 3 ) + β m c 2 ] ψ ( x , t ) ≡ H ψ ( x , t ) {displaystyle ihbar {frac {partial psi (mathbf {x} ,t)}{partial t}}=leftpsi (mathbf {x} ,t)equiv Hpsi (mathbf {x} ,t)}亦可以矢量符号写为:其中的系数 α i {displaystyle alpha _{i}} 和 β {displaystyle beta } 不能是简单的常数,否则即使对于简单的空间旋转变换,这个方程也不是洛伦兹协变的。因此狄拉克假设这些系数都是N×N阶矩阵以满足洛伦兹协变性。如果系数 α i {displaystyle alpha _{i}} 是矩阵,那么波函数 ψ ( x , t ) {displaystyle psi (mathbf {x} ,t)} 也不能是简单的标量场,而只能是N×1阶列矢量狄拉克把这些列矢量叫做旋量(Spinor),这些旋量所决定的概率密度总是正值同时,这些旋量的每一个标量分量 ψ i ( x , t ) {displaystyle psi _{i}(mathbf {x} ,t)} 需要满足标量场的克莱因-戈尔登方程。比较两者可以得出系数矩阵需要满足如下关系:满足以上条件的系数矩阵 α {displaystyle alpha } 和 β {displaystyle beta } 本征值只可以取±1,并且要求是无迹的,即矩阵的对角线元素和为零。这样,矩阵的阶数N只能为偶数,即包含有相等数量的+1和-1。满足条件的最小偶数是4而不是2,原因是存在3个泡利矩阵。也可以用狭义相对论惯用四维矩阵来理解,如四动量。在不同基中这些系数矩阵有不同形式,最常见的形式为:这里 σ i {displaystyle sigma _{i}} 即为泡利矩阵:因此系数矩阵 α {displaystyle alpha } 和 β {displaystyle beta } 可进一步写为:按照量子场论的自然单位制习惯,设 ℏ = c = 1 {displaystyle hbar =c=1} ,狄拉克方程可写为:定义四个反对易矩阵γμ,μ=0,1,2,3(称为狄拉克矩阵)。其反对易关系为:利用上式可证明因此狄拉克方程可写成:i ℏ γ μ ∂ μ ψ − m c ψ = 0 {displaystyle ihbar gamma ^{mu }partial _{mu }psi -mcpsi =0}采取自然单位制习惯 ℏ = c = 1 {displaystyle hbar =c=1} ,则可将狄拉克方程写成:与上面给出的 α, β相对应,可以选择:若采用费曼斜线标记,比如偏微分符号 ∂ / {displaystyle {partial !!!{big /}}} (英语念作d-slash);其将狄拉克矩阵与各分量做乘积求和的计算,合并为一标有斜线之符号:可使狄拉克方程变成:若同时采用费曼斜线符号及自然单位制.mw-parser-output .serif{font-family:Times,serif}ħ = c = 1,狄拉克方程可写成一极为简单的形式:( i ∂ / − m ) ψ = 0 {displaystyle (i{partial !!!{big /}}-m)psi =0,}以狄拉克公式来解释能量阶,会发现每个电子能级会有相对的负能级,但是实验上普通电子无法带有负能量,因此狄拉克假设负能量阶已被无限的负能电子海占据,所以观测的电子无法进入负能级。这假说有许多疑点,尤其是无限的电子海其实有接受更多电子的能级,所以无法防止负能级电子的产生。

相关

  • 鲸目鲸下目 (学名:Cetacea)旧称鲸目,是偶蹄目的演化支之一,包含了大约八十多种大型的有胎盘海洋哺乳动物,即鲸鱼﹑海豚和鼠海豚。鲸下目的现存物种可分为两个小目:齿鲸(Odontoceti)及须鲸(My
  • 风茄根毒茄参(学名:Mandragora officinarum),《圣经》中译作风茄,也叫曼德拉草,是茄科茄参属多年生草本植物。,其根部外型类似人的样子。长期用于巫术仪式,包括今天的威卡教。其根部分叉并
  • 联环丙烯联环丙烯是一种有机化合物,其分子式为C6H6,是苯的价键异构体之一,其结构可以视为是二个以单键相连的环丙烯单元。因着双键位置的不同,联环丙烯也有三个异构物。化学家Billups及H
  • 火山灰火山灰是火山喷发物之一;粒径在2毫米以下的碎石、矿物质或火山玻璃,像灰尘;颜色深灰、浅灰、白和黄。火山灰也被俗称所有火山喷出物,其实正确说法是火山喷发碎屑。在火山爆炸式
  • 双胞胎双胞胎(英语:twins),又称孪生、孪生儿、孪生子、孖生、双生,双生儿。指胎生动物一次怀胎里同时生下两个个体的情况。人类生育的通常情况,女性每一次月经周期,卵巢只会释放一粒卵子,
  • 不相干的谬误不相干的谬误(fallacies of relevance)或分散注意力的谬误(fallacies of distraction)是指论证的前提和结论毫无逻辑关联的不当推理方式,这种情况又称不相干的结论(irrelevant con
  • 致癌致癌物质(英语:Carcinogen)是指任何会直接导致生物体产生癌症的物质,包括化学物质、病毒、放射性核素等。这些物质进入机体后会直接或间接使机体细胞受到损害,导致生物大分子异常
  • 左西孟旦左西孟旦为芬兰欧里昂(orion)公司研发的钙增敏剂类增强心肌收缩力药物,是该类药物中第一个上市的品种。于2000年10月在瑞典首次上市,适应症为急性失代偿性心力衰竭,规格为水针,12.
  • 非洲猬目 Afrosoricida非洲猬目(Afrosoricida),又名非洲鼩目,是包含了南部非洲的金毛鼹及马达加斯加与非洲的马岛猬的目。一些科学家会使用Tenrecomorpha来表示马岛猬/金毛鼹的分支,但证据显示非洲猬目
  • 易水学派易水学派,中医流派,由金朝张元素所创,因张元素为河北易水人,故得此名。本派认为,人的疾病多起于自身,故以内伤为主要病因。著名代表有李杲、罗天益、王好古等人。在金元时期,与河间