狄拉克方程

✍ dations ◷ 2025-02-23 14:21:56 #狄拉克方程
理论物理中,相对于薛定谔方程之于非相对论量子力学,狄拉克方程是相对论量子力学的一项描述自旋-½粒子的波函数方程,由英国物理学家保罗·狄拉克于1928年建立,不带矛盾地同时遵守了狭义相对论与量子力学两者的原理,实则为薛定谔方程的洛伦兹协变式。这条方程预言了反粒子的存在,随后1932年由卡尔·安德森发现了正电子(positron)而证实。( i ∂ / − m ) ψ = 0 {displaystyle (i{partial !!!{big /}}-m)psi =0,}带有自旋-½的自由粒子的狄拉克方程的形式如下:其中 m {displaystyle m,} 是自旋-½粒子的质量, x {displaystyle mathbf {x} } 与 t {displaystyle t} 分别是空间和时间的坐标。狄拉克所希望建立的是一个同时具有洛伦兹协变性和薛定谔方程形式的波方程,并且这个方程需要确保所导出的概率密度为正值,而不是像克莱因-戈尔登方程那样存在缺乏物理意义的负值。考虑无场势自由粒子的薛定谔方程:薛定谔方程采用的时间项为一阶导数,而空间项为二阶导数,因此不具有洛伦兹协变性。若要符合洛伦兹协变性,很自然地需建构一具有空间项一阶导数的哈密顿量。而动量算符恰好是空间一阶导数。将动量算符代入式子中,从而得到i ℏ ∂ ψ ( x , t ) ∂ t = [ ℏ c i ( α 1 ∂ ∂ x 1 + α 2 ∂ ∂ x 2 + α 3 ∂ ∂ x 3 ) + β m c 2 ] ψ ( x , t ) ≡ H ψ ( x , t ) {displaystyle ihbar {frac {partial psi (mathbf {x} ,t)}{partial t}}=leftpsi (mathbf {x} ,t)equiv Hpsi (mathbf {x} ,t)}亦可以矢量符号写为:其中的系数 α i {displaystyle alpha _{i}} 和 β {displaystyle beta } 不能是简单的常数,否则即使对于简单的空间旋转变换,这个方程也不是洛伦兹协变的。因此狄拉克假设这些系数都是N×N阶矩阵以满足洛伦兹协变性。如果系数 α i {displaystyle alpha _{i}} 是矩阵,那么波函数 ψ ( x , t ) {displaystyle psi (mathbf {x} ,t)} 也不能是简单的标量场,而只能是N×1阶列矢量狄拉克把这些列矢量叫做旋量(Spinor),这些旋量所决定的概率密度总是正值同时,这些旋量的每一个标量分量 ψ i ( x , t ) {displaystyle psi _{i}(mathbf {x} ,t)} 需要满足标量场的克莱因-戈尔登方程。比较两者可以得出系数矩阵需要满足如下关系:满足以上条件的系数矩阵 α {displaystyle alpha } 和 β {displaystyle beta } 本征值只可以取±1,并且要求是无迹的,即矩阵的对角线元素和为零。这样,矩阵的阶数N只能为偶数,即包含有相等数量的+1和-1。满足条件的最小偶数是4而不是2,原因是存在3个泡利矩阵。也可以用狭义相对论惯用四维矩阵来理解,如四动量。在不同基中这些系数矩阵有不同形式,最常见的形式为:这里 σ i {displaystyle sigma _{i}} 即为泡利矩阵:因此系数矩阵 α {displaystyle alpha } 和 β {displaystyle beta } 可进一步写为:按照量子场论的自然单位制习惯,设 ℏ = c = 1 {displaystyle hbar =c=1} ,狄拉克方程可写为:定义四个反对易矩阵γμ,μ=0,1,2,3(称为狄拉克矩阵)。其反对易关系为:利用上式可证明因此狄拉克方程可写成:i ℏ γ μ ∂ μ ψ − m c ψ = 0 {displaystyle ihbar gamma ^{mu }partial _{mu }psi -mcpsi =0}采取自然单位制习惯 ℏ = c = 1 {displaystyle hbar =c=1} ,则可将狄拉克方程写成:与上面给出的 α, β相对应,可以选择:若采用费曼斜线标记,比如偏微分符号 ∂ / {displaystyle {partial !!!{big /}}} (英语念作d-slash);其将狄拉克矩阵与各分量做乘积求和的计算,合并为一标有斜线之符号:可使狄拉克方程变成:若同时采用费曼斜线符号及自然单位制.mw-parser-output .serif{font-family:Times,serif}ħ = c = 1,狄拉克方程可写成一极为简单的形式:( i ∂ / − m ) ψ = 0 {displaystyle (i{partial !!!{big /}}-m)psi =0,}以狄拉克公式来解释能量阶,会发现每个电子能级会有相对的负能级,但是实验上普通电子无法带有负能量,因此狄拉克假设负能量阶已被无限的负能电子海占据,所以观测的电子无法进入负能级。这假说有许多疑点,尤其是无限的电子海其实有接受更多电子的能级,所以无法防止负能级电子的产生。

相关

  • 穿透式电子显微镜透射电子显微镜(英语:Transmission electron microscope,缩写:TEM、CTEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生
  • ATP三磷酸腺苷(英语:adenosine triphosphate, ATP;也称作腺苷三磷酸、腺嘌呤核苷三磷酸)在生物化学中是一种核苷酸,作为细胞内能量传递的“分子通货”,储存和传递化学能。ATP在核酸合
  • 沙眼砂眼(Trachoma),又称颗粒性结膜炎(Granular conjunctivitis)、埃及眼炎(Egyptian ophthalmia)和致盲性砂眼(blinding trachoma)是由砂眼披衣菌感染导致的传染病。感染砂眼会造成眼睑
  • 下水道下水道是都市公共设施之一,在古罗马时期就已经出现。以功能可分为污水下水道和雨水下水道。目前施工可以潜盾机方式施作,以减少施工期间对交通的影响。是将由屋顶经排水管排到
  • 双相情感障碍躁郁症(英语:bipolar disorder,亦称双相情感障碍、情绪两极症,早期称为躁狂抑郁疾病、manic depression),是一种精神病经历情绪的亢奋期和抑郁期。情绪亢奋期(躁期)可分为“狂躁”或
  • 斯堪的纳维亚语斯堪的那维亚语支或北日耳曼语支,是印欧语系-日耳曼语族的一个分支,包括通行于斯堪的纳维亚地区、芬兰的一部分地区,以及法罗群岛和冰岛的语言。北日耳曼语支还可以细分为两个分
  • 毋部,为汉字索引中的部首之一,康熙字典214个部首中的第八十个(四划的则为第二十个)。就繁体和简体中文中,毋部归于四划部首。毋部通常是从下、左、右方均可为部字,且无其他部首可
  • Gasub2/subOsub3/sub氧化镓是镓最稳定的氧化物,化学式为Ga2O3,是一种白色的晶体粉末,具有两性。它是作为制造半导体器件的一部分。氧化镓可以通过在空气中加热金属镓或在200~250℃热分解硝酸镓得到
  • 2005年 伊兹密尔第二十三届夏季世界大学生运动会于2005年8月11日至8月22日在土耳其的伊兹密尔举行,这是土耳其首次主办夏季世界大学生运动会,该届比赛共设14个大项。*  主办国家/地区(土耳其
  • 帕凡舞帕凡舞(Pavane,中文也有译作“孔雀舞”)是一种偶数类拍子,简单的庄重的慢步舞,通常伴有伽利阿德舞。在16,17世纪欧洲达到全盛,当时帕凡舞是身份的象征。但1636年后这种社交舞就完