决策论

✍ dations ◷ 2025-01-26 15:01:39 #决策论

决策论是一个交叉学科,和数学、统计、经济学、哲学、管理和心理学相关。它主要研究实际决策者如何进行决策,以及如何达到最优决策。

决策论和博弈论关系密切;二者的区别是,决策论研究个人行为选择,而博弈论主要关注多个决策者之间选择的相互关系。这一领域的实证研究大多采用统计或计量经济学的方法。

大多数的决策理论是规范性的,即决策理论以假设一个具有完全信息的、可实现精度计算的、并且完全理性的理想决策者的方式达到最优的决策(在实际中,某些所谓“最好”的情景并不是最大,最优也可能包含在一个具体的或近似的最大值)。这种规范模型的实际应用(人们应当如何决策)被称为决策分析,其目标是帮助人们进行进一步良好决策的工具和方法论。决策支持系统是一种系统的、综合的用这种方法开发的软件工具。

由于人们通常的行为并不与公理一致,经常违反了其最优性。关于这种现象的相关研究称为描述性学科。这种描述性的模型试图描述实际中人们是怎么做的。由于规范和最优的决策通常测试假设是违背人们的实际行动,因此规范性模型和描述性模型建立了关联。对实践中发生决策允许进行进一步的测试,可能会放松规范模型中对完全信息、理性和其他方法的约束。最近几十年,越来越多的研究者对被称为“行为决策论”的引发兴趣,这种研究对重新评价理性决策理论的要求做出了贡献。

启发式是决策方法之一。启发式方法使得决策基于常规思维。虽然这比一步一步处理快,启发式决策可能导致出现错误的风险。通过一步一步的加工而避免的错误可能会出现。一个常见的和不正确的认识是认为启发式思维的结果是赌徒的谬论。赌徒谬论是错误地相信一个随机事件受到之前的随机事件的影响。例如,有百分之五十的概率使一枚硬币出现正面。赌徒谬误的表明,如果硬币出现反面,下次它翻转,出现正面。这是完全不正确的。这种谬论通过一步一步进行思考的过程也很难反正。然而,这样的谬论也可能符合贝叶斯模型的思维,其中投掷的硬币的实际概率并不确定,只是以以往投掷的硬币的可能来改变之前的概率可能推断出一个可能的概率范围。考虑到贝叶斯理论的在统计学中的最高的地位,在这种情境下赌徒谬论是非常合理的,更多的证据表明,实效性统计频率论的假设的并不能现实的准确模型。

一些统计工具对于决策过程中的信息收集,风险估计是非常有帮助的。人们可以计算第一类错误和第二类错误发生的概率,从而正确的评估风险损失,做出更好的理性选择。

下面这个例子说明了在审判过程中的决策过程:

相关

  • 检验科检验科(英文:clinical laboratory),主要工作是承担各个病房、急诊病人的各类检查工作。
  • 羟磷灰石.mw-parser-output ruby>rt,.mw-parser-output ruby>rtc{font-feature-settings:"ruby"1}.mw-parser-output ruby.large{font-size:250%}.mw-parser-output ruby.larger{fon
  • 手少阴心经手少阴心经(Heart Meridian of Hand-shaoyin,HT)是一条经脉,十二正经之一,与手太阳小肠经相表里。本经起于极泉,止于少冲,左右各9个腧穴。起于心中,出属于心系,过横膈,下络小肠。心系
  • 埃米尔埃米尔又译艾米尔或阿米尔(阿拉伯语:أمير‎,拉丁化:Amīr)是阿拉伯国家的贵族头衔,此封号用于中东地区和北非的阿拉伯国家,突厥在历史上亦曾使用过这个封号。一般从音译为埃米
  • B族维生素维生素B也作维他命B,是B族维生素的总称,它们常常来自于相同的食物来源,如酵母等。维生素B是身体内新陈代谢必需的一环,每种维生素B都参与了关键的代谢反应,通常以辅酶的形式存在
  • 汉人华裔俄罗斯人(俄语:Китайцы в России)指具有华裔血统的俄罗斯国民。目前华裔俄罗斯人的人口数目不详,但是华裔俄罗斯人和旅俄中国人的数目加起来为20万到40万。17
  • 驻点在数学,特别在微积分,函数在一点处的一阶导数为零,该点即函数的驻点(Stationary Point)或稳定点,也就是说若 p {\displaystyle p}
  • 阿瑜陀耶王国阿瑜陀耶(1351年-1463年) 彭世洛 (1463年-1488年) 阿瑜陀耶 (1463年-1666年) 华富里 (1666年-1688年) 阿瑜陀耶 (1688-1767)大部分信仰上座部佛教 少部分信仰泰国中部:泰国北部:泰国南
  • 巴基斯坦国际航空巴基斯坦国际航空(乌尔都语:پاکستان انٹرنیشنل ایئر لائنز‎‎;英语:Pakistan International Airlines / PIA)是巴基斯坦的国家航空公司和国有企业,前身
  • 核心数学与组合数学教育部重点实验室南开大学核心数学与组合数学教育部重点实验室(英语:The Key Laboratory of Pure Mathematics and Combinatorics,Ministry of Education),成立于2000年8月,是中华人民共和国教育部