首页 >
米氏动力学
✍ dations ◷ 2025-09-18 04:33:17 #米氏动力学
米-门二氏动力学(英语:Michaelis-Menten kinetics),又称米氏动力学,是由雷昂诺·米凯利斯(英语:Leonor Michaelis)和贸特·门顿(英语:Maud Menten)在1913年提出,它在酶动力学中是一个极为重要的方程,可以描述多种非变异构酶动力学现象,其表示式为:
V
0
=
V
m
a
x
[
S
]
K
M
+
[
S
]
{displaystyle V_{0}=V_{max}{frac {}{K_{M}+}}}以下米氏方程的推导是由Briggs和Haldane在1925年提出的:假设有下图所示的酶促反应E
+
S
k
1
⟶
⟵
k
−
1
E
S
k
2
⟶
E
+
P
{displaystyle E+S{begin{matrix}k_{1}\longrightarrow \longleftarrow \k_{-1}end{matrix}}ES{begin{matrix}k_{2}\longrightarrow \ end{matrix}}E+P}假设此酶促反应不可逆,反应产物不和酶结合;k2<k-1, E+S⇌ES 之间的平衡迅速建立达到平衡态(Steady-state),也就是底物和酶的化合物(ES)的浓度不变;建立平衡态所消耗的底物的量很小,可以忽略。这样有以下关系:d
[
E
S
]
d
t
=
k
1
[
E
]
[
S
]
−
k
−
1
[
E
S
]
−
k
2
[
E
S
]
=
0
{displaystyle {frac {d}{dt}}=k_{1}-k_{-1}-k_{2}=0}[
E
S
]
=
k
1
[
E
]
[
S
]
k
−
1
+
k
2
{displaystyle ={frac {k_{1}}{k_{-1}+k_{2}}}}米氏常数Km的定义为:K
M
=
k
−
1
+
k
2
k
1
{displaystyle K_{M}={frac {k_{-1}+k_{2}}{k_{1}}}}原式可简化为:[
E
S
]
=
[
E
]
[
S
]
K
M
{displaystyle ={frac {}{K_{M}}}}
(1)总的酶的浓度等于自由酶与酶-底物化合物的和,则有以下关系:[
E
0
]
=
[
E
]
+
[
E
S
]
{displaystyle =+}[
E
]
=
[
E
0
]
−
[
E
S
]
{displaystyle =-}
(2)将(2)式代入(1):[
E
S
]
=
(
[
E
0
]
−
[
E
S
]
)
[
S
]
K
M
{displaystyle ={frac {(-)}{K_{M}}}}整理得:[
E
S
]
K
M
[
S
]
=
[
E
0
]
−
[
E
S
]
{displaystyle {frac {K_{M}}{}}=-}[
E
S
]
(
1
+
K
M
[
S
]
)
=
[
E
0
]
{displaystyle (1+{frac {K_{M}}{}})=}[
E
S
]
=
[
E
0
]
1
1
+
K
M
[
S
]
{displaystyle ={frac {1}{1+{frac {K_{M}}{}}}}}
(3)下式可以描述该酶促反应的速率:d
[
P
]
d
t
=
k
2
[
E
S
]
{displaystyle {frac {d}{dt}}=k_{2}}
(4)将 (3) 代入 (4),分号上下同时乘以得:d
[
P
]
d
t
=
k
2
[
E
0
]
[
S
]
K
M
+
[
S
]
=
V
m
a
x
[
S
]
K
M
+
[
S
]
{displaystyle {frac {d}{dt}}=k_{2}{frac {}{K_{M}+}}=V_{max}{frac {}{K_{M}+}}}
或
V
0
=
V
m
a
x
[
S
]
K
M
+
[
S
]
{displaystyle V_{0}=V_{max}{frac {}{K_{M}+}}}该式可通过非线性作图或Lineweaver-Burk(双倒数作图),Eadie-Hofstee等作图法变换为线性图进行分析。在推导过程中几点需要注意:要测得方程中的KM和Vmax,需要在酶的量恒定并已知的情况下,在不同的底物浓度下测得反应的初速度V0,用非线性作图或线性作图的方法求得KM和Vmax。KM反映了底物和酶结合的紧密程度,Vmax反映了酶催化反应的速度。
相关
- 临床测试临床试验(英语:Clinical trial)是一种根据研究方案利用已上市药物或安慰剂作为对照组的方式,对药物或其他医学治疗在受试者身上进行比较测试的过程。在临床试验中,研究者要先决定
- 新几内亚新几内亚(英语:New Guinea;巴布亚皮钦语:Niugini;印尼语:Papua)位于澳大利亚北面,是世界上第二大岛屿。有时,本岛亦被称为“巴布亚”,但有时巴布亚亦单指本岛的一部分。此外,印尼官方过
- 马尼拉马尼拉(他加禄语:Maynila,英语:Manila),又称岷里拉,是菲律宾首都,位于小菲律宾的最大岛—吕宋岛马尼拉湾的东岸;今为菲第二大城,人口有150万;乃全国经济、文化、教育和工业中心。2013年
- 塔格糖塔格糖(英语:Tagatose)在分类上属于己糖与酮糖,为D-果糖四号位碳所对应的差向异构体,存在于一些树胶的水解产物中。甜度与蔗糖相似,而产生的热量只为蔗糖的三分之一,因此可作为低热
- 躲猫猫躲猫猫(英语:Peekaboo或Peek-a-boo),是一种逗乐婴儿、幼儿的游戏。躲猫猫的反复遮眼玩法多是西方国家逗乐婴儿的游戏,玩法是父母用双手蒙住自己的脸,然后靠近婴儿,将手突然拿开,变出
- 普拉克西特列斯普拉克西特列斯(希腊语:Πραξιτέλης),公元前4世纪古希腊著名的雕刻家。和留西波斯、斯科帕斯一起被誉为古希腊最杰出的三大雕刻家。他是开菲索多妥斯的儿子和学生。他
- 狄奥多里克大帝狄奥多里克大帝(拉丁语:Flavius Theodericus,希腊语:Θευδέριχος,古德语:Dietrich,法语:Thierry;454年-526年8月30日)东哥特人的领袖(471年起),东哥特王国(其疆域大部分位于今日的
- ~؋ ₳ ฿ ₿ ₵ ¢ ₡ ₢(英语:Brazilian cruzeiro) $ ₫ ₯ ֏ ₠ € ƒ(英语:Florin sign) ₣ ₲ ₴(英语:Hryvnia sign) ₭ ₺
- 大黄大黄,又称作生大黄、熟大黄、生将军、生锦纹、酒军、黄良、川军,是多种蓼科大黄属的多年生草本植物的合称,一般从粗短的根茎种植。大黄长有三角形的大叶,叶柄肥厚。花形细小,聚集
- 海因里希·赫兹海因里希·赫兹(德语:Heinrich Hertz,1857年2月22日-1894年1月1日),德国物理学家,于1887年首先用实验证实了电磁波的存在,并于1888年发表了论文。他对电磁学有很大的贡献,故频率的国