电子康普顿波长

✍ dations ◷ 2025-04-03 18:15:56 #电子康普顿波长
粒子的康普顿波长(Compton wavelength)λ,其关系式如下:式中的变数符号定义约化康普顿波长 λ ¯ {displaystyle {bar {lambda }}} 为根据CODATA 2014的数值,电子的康普顿波长是2.4263102367(11)×10-12 m。不同的粒子,有不同的康普顿波长.在考虑到量子力学与狭义相对论为前提下,康普顿波长被认为是测量粒子位置的基本限制。其大小取决于该粒子的质量 m   {displaystyle m } 。 现举一例子说明这个,设用反射回来的光去量度粒子的位置──但要准确地量度位置需要波长短的光。波长短的光是由高能量光子所组成的。若这些光子的能量超过 m c 2   {displaystyle mc^{2} } ,当击中被量度位置的粒子时,其撞击所产生的能量可能会足够产生同类型的粒子。这使得粒子的原位置这个问题变得毫无意义。此论点同时亦表明了康普顿波长是量子场论──可用于描述粒子的生成或湮灭──需要被重视的长度上限。我们可以用以下方法将上述论点变得更精确一点。设要量度粒子的位置至一准确度△x。 则其位置及动量的不确定性关系式为Δ x Δ p ≥ ℏ / 2 {displaystyle Delta x,Delta pgeq hbar /2}所以粒子动量的不确定性符合:Δ p ≥ ℏ 2 Δ x {displaystyle Delta pgeq {frac {hbar }{2Delta x}}}使用相对性原理中的动量与能量,当 Δ p {displaystyle Delta p} 大于 m c {displaystyle mc} 时能量的不确定性比 m c 2   {displaystyle mc^{2} } 要大,会有足够的能量生成出一个同类型的粒子。所以运用一点代数,可见存在一基础上限Δ x ≥ ℏ 2 m c {displaystyle Delta xgeq {frac {hbar }{2mc}}}所以至少在大约一倍大小以内,粒子位置的不确定性一定要比康普顿波长 h / m c   {displaystyle h/mc } 为大。康普顿波长能够与德布罗意波长作对比;后者大小视粒子的动量而定,它同时也决定量子力学中粒子的粒性及波性的分界线。对费米子而言,其康普顿波长决定了相互作用的反应截面积。例如,对一从电子来的光子而言,其汤姆孙散射反应截面积等于( 8 π / 3 ) α 2 λ e 2 {displaystyle (8pi /3)alpha ^{2}lambda _{e}^{2}} ,其中 α   {displaystyle alpha } 为精细结构常数, λ e   {displaystyle lambda _{e} } 为电子的康普顿波长。而规范场玻色子而言,其康普顿波长决定了汤川相互作用的有效范围:由于光子无质量,电磁的作用距离为无限。电子的康普顿波长一组三个互相关连的长度单位中的一个,另外两个是玻尔半径 a 0 {displaystyle a_{0}} 及经典电子半径 r e {displaystyle r_{e}} 。康普顿波长是由电子质量 m e {displaystyle m_{e}} ,普朗克常数 h {displaystyle h} 及光速 c {displaystyle c} 构建的。而玻尔半径则是由 m e {displaystyle m_{e}} , h {displaystyle h} 及电子电荷 e {displaystyle e} 所构建。经典电子半径就由 m e {displaystyle m_{e}} , c {displaystyle c} 及 e {displaystyle e} 构建。这三种长度中的任何一种都能够被写成另外两种长度及精细结构常数的倍数 α {displaystyle alpha } :r e = α λ e 2 π = α 2 a 0 {displaystyle r_{e}={alpha lambda _{e} over 2pi }=alpha ^{2}a_{0}}普朗克质量的特殊在于它跟 2 π {displaystyle 2pi } 及这类因数没有关系,这个质量的康普顿波长相等于其史瓦西半径。由此而得的特殊长度被称为普朗克长度。从简易的量纲分析可得:史瓦西半径与质量成正比,而康普顿波长与质量成反比。

相关

  • 反刍综合症反刍综合症是指经常性的将已经吞咽下去的正常食物吐出或是咀嚼后再咽下的一种进食障碍,过去这种疾病只在儿童身上出现,但如今它在成年人身上出现了上升趋势。
  • 甲锗烷甲锗烷是锗烷(GenH2n+2)中最简单的一种,分子式为GeH4。和同族的甲烷、甲硅烷一样,甲锗烷也是正四面体结构。甲锗烷在空气中燃烧生成二氧化锗和水。甲锗烷可通过以下方法合成:木星
  • 比利·简·金比利·简·金(英语:Billie Jean King,1943年11月22日-),原姓Moffitt,美国职业网球运动员。她赢得了12个大满贯单打冠军,16个大满贯女双冠军和11个大满贯混双冠军。她与玛蒂娜·纳芙
  • 头戴式显示器头戴式显示器(英语:Head-mounted display or 英语:helmet-mounted display),简称HMD。是用于显示图像及色彩的设备。头戴式显示器的外型通常是眼罩或头盔的形式,把显示屏贴近用户
  • 匡廷云匡廷云(1934年12月29日-),四川资中人,中国植物生理学家,中国科学院植物研究所研究员。1956年毕业于北京农业大学土壤农业化学系。1962年于苏联莫斯科国立大学生物系研究生毕业,获副
  • 戴维·吉尔戴维·吉尔爵士,KCB FRS FRSE LLD(英语:Legum Doctor)(英语:Sir David Gill,1843年6月12日-1914年1月24日),苏格兰天文学家,知名于天文距离测量、天体照相学和大地测量学。他的职业生涯
  • 国 (政治实体)国家(法语:État,德语:Staat,英语:state,西班牙语/葡萄牙语:estado)是指一个有组织的政治群体,在单一政府之下共同生活。国的英文“state”未必都是指主权国家(sovereign state),也可能是
  • 过失致死过失致死罪(英语:negligent homicide)是一项成文罪行,是在没有杀人故意下,因疏忽、违反保护他人的法律或规则、或粗心大意而引致他人死亡。虽然此罪行在法律上的名称为“过失致死
  • 衣冠南渡衣冠南渡,指晋朝时中原政权和文明首次大规模南迁,由黄河流域迁至长江流域。八王之乱后,晋怀帝、晋愍帝时期之中原地区仍战争不断,内徙的周边部族相继建立政权,威胁到西晋政权,最终
  • 伊格纳兹·莫谢莱斯伊格纳兹·莫谢莱斯(德语:Ignaz Moscheles,1794年5月23日-1870年3月10日),犹太血统的捷克作曲家,钢琴家。莫谢莱斯早年到维也纳学习作曲,并在欧洲各地旅行演出,后来又移居伦敦,从克莱