柯西序列

✍ dations ◷ 2025-10-16 14:21:34 #奥古斯丁·路易·柯西,度量几何,数学分析,拓扑学,抽象代数,序列

在数学中,柯西序列、柯西列、柯西数列或基本列是指这样一个数列,它的元素随着序数的增加而愈发靠近。更确切地说,在去掉有限个元素后,可以使得余下的元素中任何两点间的距离的最大值不超过任意给定的正数。柯西列是以数学家奥古斯丁·路易·柯西的名字命名的。

柯西列的定义依赖于距离的定义,所以只有在度量空间中柯西列才有意义。在更一般的一致空间中,可以定义更为抽象的柯西滤子和柯西网。

一个重要性质是,在完备空间中,所有的柯西数列都有极限且极限在这空间里,这就让人们可以在不求出这个极限(如果存在)的情况下,利用柯西列的判别法则证明该数列的极限是存在的。柯西列在构造具有完备性的代数结构的过程中也有重要价值,如构造实数。

一个复数序列

被称为柯西列,如果对于任何正实数 r > 0 {\displaystyle r>0} ,存在一个正整数 N {\displaystyle N} 使得对于所有的整数 m , n N {\displaystyle m,n\geq N} ,都有

其中的竖线表示绝对值或模。

类似地,我们可以定义实数的柯西列。

为了将柯西列的定义推广到一般的度量空间,必须将绝对值替换为该度量空间中的距离。

形式上说,给定任何一个度量空间 ( M , d ) {\displaystyle (M,d)} ,一个序列

被称为柯西列,如果对于任何正实数 r > 0 {\displaystyle r>0} ,存在一个正整数 N {\displaystyle N} 使得对于所有的整数 m , n > N {\displaystyle m,n>N} ,都有

其中 d ( x , y ) {\displaystyle d(x,y)} 表示 x {\displaystyle x} y {\displaystyle y} 之间的距离。

直观上说,一个序列中的元素越来越靠近似乎说明这个序列必然在这个度量空间存在一个极限,而事实上在某些情况下这个结论是不对的。

这个数列趋于 2 {\displaystyle {\sqrt {2}}} ,但 2 {\displaystyle {\sqrt {2}}} 不属于 Q {\displaystyle \mathbb {Q} } ,因此这个数列不收敛。

一个度量空间 X {\displaystyle X} 中的所有柯西数列都会收敛到 X {\displaystyle X} 中的一点 ,那么 X {\displaystyle X} 被称为是一个完备空间。

实数是完备的,而且标准的实数构造包含有理数的柯西列。

有理数 Q {\displaystyle \mathbb {Q} } 在通常定义的距离意义下不是完备的:

存在某个由有理数组成的序列,收敛到某个无理数,所以这数列在有理数这空间是不收敛的。

例如:

任何收敛数列必然是柯西列,任何柯西列必然是有界序列。

如果 f : M N {\displaystyle f\colon M\rightarrow N} 是一个由度量空间 M {\displaystyle M} 到度量空间 N {\displaystyle N} 的一致连续的映射,并且 { x n } {\displaystyle \{x_{n}\}} M {\displaystyle M} 中的柯西列,那么 { f ( x n ) } {\displaystyle \{f(x_{n})\}} 也必然是 N {\displaystyle N} 中的柯西列。

如果 { x n } {\displaystyle \{x_{n}\}} { y n } {\displaystyle \{y_{n}\}} 是有理数、实数或复数构成的柯西列,那么 { x n + y n } {\displaystyle \{x_{n}+y_{n}\}} { x n y n } {\displaystyle \{x_{n}y_{n}\}} 也是柯西列。

在一个拓扑向量空间 X {\displaystyle X} 中同样可以定义一个柯西列:在 X {\displaystyle X} 选择一个 0 {\displaystyle 0} 局部基 B {\displaystyle {\mathcal {B}}} ,如果对于 B {\displaystyle {\mathcal {B}}} 中的任何元素 V {\displaystyle V} ,存在一个正整数 N {\displaystyle N} 使得对于任意的 m , n > N {\displaystyle m,n>N} 而言,序列 { x k } {\displaystyle \{x_{k}\}} 满足 x m x n V {\displaystyle x_{m}-x_{n}\in V} ,那么这个序列就称为一个柯西列。

如果这个拓扑向量空间 X {\displaystyle X} 上有恰好可以引入一个平移不变度量 d {\displaystyle d} ,那么上述方法定义的柯西列和利用这个度量 d {\displaystyle d} 定义的柯西列是等价的。

在一个群中,同样可以定义柯西列:

H = { H r } {\displaystyle H=\{H_{r}\}} 表示一列有限指标的递减的 G {\displaystyle G} 的正规子群,那么群 G {\displaystyle G} 中一个序列 { x n } {\displaystyle \{x_{n}\}} 称为柯西列(对于上述 H {\displaystyle H} 而言),当且仅当对于任意的 r {\displaystyle r} ,存在正整数 N {\displaystyle N} 使得对于任意的 m , n > N {\displaystyle m,n>N} ,都有 x m x n 1 H {\displaystyle x_{m}x_{n}^{-1}\in H}

如果用 C {\displaystyle C} 表示所有的这样定义的柯西列组成的集合,那么 C {\displaystyle C} 在序列点点相乘的意义下构成一个新的群。而且 C 0 {\displaystyle C_{0}} ,即所有空序列(对于任意 r {\displaystyle r} ,存在 N {\displaystyle N} 使得对于任意 n > N {\displaystyle n>N} ,都有 n H r {\displaystyle n\in H_{r}} )构成了 C {\displaystyle C} 的正规子群。而商群 C / C 0 {\displaystyle C/C_{0}} 称为 G {\displaystyle G} 相对于 H {\displaystyle H} 的完备化(。

可以证明,这个完备化同构与序列 { G / H 4 } {\displaystyle \{G/H_{4}\}} 的逆向极限(英语:inverse limit)同构。

如果 H {\displaystyle H} 是个共尾序列(即任何有限的正规子群均包含某个 H r {\displaystyle H_{r}} ),那么这个完备化在与 { G / H } H {\displaystyle \{G/H\}_{H}} 的逆极限同构的意义下是规范的,这里的 H {\displaystyle H} 跑遍所有有限的正规子群。

相关

  • 中心粒中心粒(英语:centriole)是中心体(centrosome)的组成部分。中心粒不具备膜结构,由蛋白质组成,呈颗粒状。一个中心粒由9组三联管组成,通常靠近细胞核。一个中心体共含有两个中心粒,两者
  • 王梓坤王梓坤(1929年4月21日-)原名王森福,生于湖南零陵,江西吉安人。1952年毕业于武汉大学数学力学系,曾任南开大学校长、北京师范大学校长,概率统计教授、博士生导师,1991年当选中国科学
  • 嘉义医院卫生福利部嘉义医院(简称嘉义医院)是一所位于台湾省嘉义市西区的卫生福利部所属医院,以777床的病床数位列南台湾规模最大的部立医院。市区1路 嘉义医院站(位于中兴路)家庭医学科
  • 生主生主(天城体:प्रजापति,字面意思是“众生之主”),亦译为世主,婆罗门教和印度教中的一个神祇名称。“生主”一词的含义非常复杂,有时它指一个、或一组具体的神,有时它只是一个
  • 皮塔饼皮塔饼(英语:Pita),又称阿拉伯薄面包(阿拉伯语:الخبز العربي‎、Arabic thin bread)或口袋饼,是一种圆形口袋状面食,广泛流行于希腊、土耳其、巴尔干半岛、地中海东部地区
  • 多梅尼科·基尔兰达约多米尼哥·基兰达奥(Domenico Ghirlandaio 意大利语:;1449年-1494年1月11日),或译多梅尼科·基尔兰达约,是一位意大利文艺复兴时期的画家,也是佛罗伦萨在文艺复兴时期涌现的的第三代
  • 全国步枪协会美国全国步枪协会,又译美国来福枪协会,(英语:National Rifle Association、NRA),是美国的一个非营利性民权组织,也被认为是典型的利益团体。NRA支持美国人权法案的《宪法第二修正案
  • 公司王国公司王国(英语:corporatocracy或corporocracy)是一个由全球正义运动(英语:Global Justice Movement)的支持者发明的新词,用来形容屈从于组织实业压力的政府。虽然原则上说人人都可
  • 奥古斯都 (称号)奥古斯都(拉丁文 Augustus的中译,复数型 Augusti)的原意为“神圣的”、“高贵的”,带有宗教与神学式的意味。它的阴性型为奥古斯塔(Augusta)。希腊文的同义字是“Σεβαστός
  • 内侧菱形三十面体在几何学中,内侧菱形三十面体,又称小星形三十面体是一种菱形三十面体的星形多面体,由30个全等且互相相交的菱形组成。其对偶多面体为十二合十二面体。内侧菱形三十面体由30个面