柯西序列

✍ dations ◷ 2025-09-07 07:06:24 #奥古斯丁·路易·柯西,度量几何,数学分析,拓扑学,抽象代数,序列

在数学中,柯西序列、柯西列、柯西数列或基本列是指这样一个数列,它的元素随着序数的增加而愈发靠近。更确切地说,在去掉有限个元素后,可以使得余下的元素中任何两点间的距离的最大值不超过任意给定的正数。柯西列是以数学家奥古斯丁·路易·柯西的名字命名的。

柯西列的定义依赖于距离的定义,所以只有在度量空间中柯西列才有意义。在更一般的一致空间中,可以定义更为抽象的柯西滤子和柯西网。

一个重要性质是,在完备空间中,所有的柯西数列都有极限且极限在这空间里,这就让人们可以在不求出这个极限(如果存在)的情况下,利用柯西列的判别法则证明该数列的极限是存在的。柯西列在构造具有完备性的代数结构的过程中也有重要价值,如构造实数。

一个复数序列

被称为柯西列,如果对于任何正实数 r > 0 {\displaystyle r>0} ,存在一个正整数 N {\displaystyle N} 使得对于所有的整数 m , n N {\displaystyle m,n\geq N} ,都有

其中的竖线表示绝对值或模。

类似地,我们可以定义实数的柯西列。

为了将柯西列的定义推广到一般的度量空间,必须将绝对值替换为该度量空间中的距离。

形式上说,给定任何一个度量空间 ( M , d ) {\displaystyle (M,d)} ,一个序列

被称为柯西列,如果对于任何正实数 r > 0 {\displaystyle r>0} ,存在一个正整数 N {\displaystyle N} 使得对于所有的整数 m , n > N {\displaystyle m,n>N} ,都有

其中 d ( x , y ) {\displaystyle d(x,y)} 表示 x {\displaystyle x} y {\displaystyle y} 之间的距离。

直观上说,一个序列中的元素越来越靠近似乎说明这个序列必然在这个度量空间存在一个极限,而事实上在某些情况下这个结论是不对的。

这个数列趋于 2 {\displaystyle {\sqrt {2}}} ,但 2 {\displaystyle {\sqrt {2}}} 不属于 Q {\displaystyle \mathbb {Q} } ,因此这个数列不收敛。

一个度量空间 X {\displaystyle X} 中的所有柯西数列都会收敛到 X {\displaystyle X} 中的一点 ,那么 X {\displaystyle X} 被称为是一个完备空间。

实数是完备的,而且标准的实数构造包含有理数的柯西列。

有理数 Q {\displaystyle \mathbb {Q} } 在通常定义的距离意义下不是完备的:

存在某个由有理数组成的序列,收敛到某个无理数,所以这数列在有理数这空间是不收敛的。

例如:

任何收敛数列必然是柯西列,任何柯西列必然是有界序列。

如果 f : M N {\displaystyle f\colon M\rightarrow N} 是一个由度量空间 M {\displaystyle M} 到度量空间 N {\displaystyle N} 的一致连续的映射,并且 { x n } {\displaystyle \{x_{n}\}} M {\displaystyle M} 中的柯西列,那么 { f ( x n ) } {\displaystyle \{f(x_{n})\}} 也必然是 N {\displaystyle N} 中的柯西列。

如果 { x n } {\displaystyle \{x_{n}\}} { y n } {\displaystyle \{y_{n}\}} 是有理数、实数或复数构成的柯西列,那么 { x n + y n } {\displaystyle \{x_{n}+y_{n}\}} { x n y n } {\displaystyle \{x_{n}y_{n}\}} 也是柯西列。

在一个拓扑向量空间 X {\displaystyle X} 中同样可以定义一个柯西列:在 X {\displaystyle X} 选择一个 0 {\displaystyle 0} 局部基 B {\displaystyle {\mathcal {B}}} ,如果对于 B {\displaystyle {\mathcal {B}}} 中的任何元素 V {\displaystyle V} ,存在一个正整数 N {\displaystyle N} 使得对于任意的 m , n > N {\displaystyle m,n>N} 而言,序列 { x k } {\displaystyle \{x_{k}\}} 满足 x m x n V {\displaystyle x_{m}-x_{n}\in V} ,那么这个序列就称为一个柯西列。

如果这个拓扑向量空间 X {\displaystyle X} 上有恰好可以引入一个平移不变度量 d {\displaystyle d} ,那么上述方法定义的柯西列和利用这个度量 d {\displaystyle d} 定义的柯西列是等价的。

在一个群中,同样可以定义柯西列:

H = { H r } {\displaystyle H=\{H_{r}\}} 表示一列有限指标的递减的 G {\displaystyle G} 的正规子群,那么群 G {\displaystyle G} 中一个序列 { x n } {\displaystyle \{x_{n}\}} 称为柯西列(对于上述 H {\displaystyle H} 而言),当且仅当对于任意的 r {\displaystyle r} ,存在正整数 N {\displaystyle N} 使得对于任意的 m , n > N {\displaystyle m,n>N} ,都有 x m x n 1 H {\displaystyle x_{m}x_{n}^{-1}\in H}

如果用 C {\displaystyle C} 表示所有的这样定义的柯西列组成的集合,那么 C {\displaystyle C} 在序列点点相乘的意义下构成一个新的群。而且 C 0 {\displaystyle C_{0}} ,即所有空序列(对于任意 r {\displaystyle r} ,存在 N {\displaystyle N} 使得对于任意 n > N {\displaystyle n>N} ,都有 n H r {\displaystyle n\in H_{r}} )构成了 C {\displaystyle C} 的正规子群。而商群 C / C 0 {\displaystyle C/C_{0}} 称为 G {\displaystyle G} 相对于 H {\displaystyle H} 的完备化(。

可以证明,这个完备化同构与序列 { G / H 4 } {\displaystyle \{G/H_{4}\}} 的逆向极限(英语:inverse limit)同构。

如果 H {\displaystyle H} 是个共尾序列(即任何有限的正规子群均包含某个 H r {\displaystyle H_{r}} ),那么这个完备化在与 { G / H } H {\displaystyle \{G/H\}_{H}} 的逆极限同构的意义下是规范的,这里的 H {\displaystyle H} 跑遍所有有限的正规子群。

相关

  • 拟态词拟态词是指用文字化的声音模拟事物特征的词汇。在东亚的语言中有大量的拟态词;非洲的语言里也有很多拟态词;在欧洲的几种主要语言里,这种词很少,并视之为一种儿语化的修辞手法。
  • 同音文章同音文章常指的是在现代汉语普通话中使用同一或相近读音的汉字所写成的文章。因为现代汉语普通话中有很多的同音字,所以只能用现代汉语普通话文言文才能写作。英语中也有相似
  • 共振共振点(声学称为共鸣)是指当一种物理系统在特定频率底下,比其他频率以更大的振幅做振动的情形;此些特定频率称之为共振频率。在共振频率下,很小的周期驱动力便可产生巨大的振动,因
  • 高雄街高雄街,为1920年-1924年间存在之行政区,辖属高雄州高雄郡,范围包括今高雄市旗津区、盐埕区、前金区、新兴区之全部,以及鼓山区大部分、苓雅区中西部、三民区西部、前镇区西北部
  • 清齿龈鼻音是一些语言中存在的一种辅音。它是清鼻音的一种,和普通的鼻音的区别是发音时声带不振动。国际音标中代表代表此音的符号是⟨n̥⟩或⟨n̊⟩,是浊齿龈鼻音的符号和在
  • 先锋先锋物种是一个生态学概念,指得是一个生态群落的演替早期阶段或演替中期阶段的物种。先锋物种在生态恢复中被使用,对于一个受到破坏、丧失原有动植物群落的环境,先锋物种即在破
  • 和克斯柏立岛和克斯柏立岛(英语:Hawkesbury Island)是一个位于加拿大不列颠哥伦比亚省的岛屿。和克斯柏立岛长43千米,最宽处19千米,面积412平方千米。和克斯柏立岛名字的来源是贸易委员会主席
  • 灼伤灼伤是指皮肤或其他组织因热力、电力、化学物质、摩擦力或辐射所造成的创伤。大部分的灼伤是因接触滚烫液体、固体或火焰的高温。暴露在烹饪的火焰或不安全的煮食器具的危险
  • 比照法比照法(comparative method)或比较法是一套比较语言学的研究方法,语言学家用它来揭示语言间的源流关系。它的任务是通过同源词的比较来证明两种或多种切实存在或存在过的语言拥
  • 钙板金藻钙板金藻(coccolithophores)又名球石藻、颗石藻,属于定鞭藻门(Haptophyta)、钙板金藻科、钙板金藻属(Gephyrocapsa),是海洋中的一种单细胞植物,广泛分布于海洋中。钙板金藻是真核微藻