柯西序列

✍ dations ◷ 2024-12-22 20:01:15 #奥古斯丁·路易·柯西,度量几何,数学分析,拓扑学,抽象代数,序列

在数学中,柯西序列、柯西列、柯西数列或基本列是指这样一个数列,它的元素随着序数的增加而愈发靠近。更确切地说,在去掉有限个元素后,可以使得余下的元素中任何两点间的距离的最大值不超过任意给定的正数。柯西列是以数学家奥古斯丁·路易·柯西的名字命名的。

柯西列的定义依赖于距离的定义,所以只有在度量空间中柯西列才有意义。在更一般的一致空间中,可以定义更为抽象的柯西滤子和柯西网。

一个重要性质是,在完备空间中,所有的柯西数列都有极限且极限在这空间里,这就让人们可以在不求出这个极限(如果存在)的情况下,利用柯西列的判别法则证明该数列的极限是存在的。柯西列在构造具有完备性的代数结构的过程中也有重要价值,如构造实数。

一个复数序列

被称为柯西列,如果对于任何正实数 r > 0 {\displaystyle r>0} ,存在一个正整数 N {\displaystyle N} 使得对于所有的整数 m , n N {\displaystyle m,n\geq N} ,都有

其中的竖线表示绝对值或模。

类似地,我们可以定义实数的柯西列。

为了将柯西列的定义推广到一般的度量空间,必须将绝对值替换为该度量空间中的距离。

形式上说,给定任何一个度量空间 ( M , d ) {\displaystyle (M,d)} ,一个序列

被称为柯西列,如果对于任何正实数 r > 0 {\displaystyle r>0} ,存在一个正整数 N {\displaystyle N} 使得对于所有的整数 m , n > N {\displaystyle m,n>N} ,都有

其中 d ( x , y ) {\displaystyle d(x,y)} 表示 x {\displaystyle x} y {\displaystyle y} 之间的距离。

直观上说,一个序列中的元素越来越靠近似乎说明这个序列必然在这个度量空间存在一个极限,而事实上在某些情况下这个结论是不对的。

这个数列趋于 2 {\displaystyle {\sqrt {2}}} ,但 2 {\displaystyle {\sqrt {2}}} 不属于 Q {\displaystyle \mathbb {Q} } ,因此这个数列不收敛。

一个度量空间 X {\displaystyle X} 中的所有柯西数列都会收敛到 X {\displaystyle X} 中的一点 ,那么 X {\displaystyle X} 被称为是一个完备空间。

实数是完备的,而且标准的实数构造包含有理数的柯西列。

有理数 Q {\displaystyle \mathbb {Q} } 在通常定义的距离意义下不是完备的:

存在某个由有理数组成的序列,收敛到某个无理数,所以这数列在有理数这空间是不收敛的。

例如:

任何收敛数列必然是柯西列,任何柯西列必然是有界序列。

如果 f : M N {\displaystyle f\colon M\rightarrow N} 是一个由度量空间 M {\displaystyle M} 到度量空间 N {\displaystyle N} 的一致连续的映射,并且 { x n } {\displaystyle \{x_{n}\}} M {\displaystyle M} 中的柯西列,那么 { f ( x n ) } {\displaystyle \{f(x_{n})\}} 也必然是 N {\displaystyle N} 中的柯西列。

如果 { x n } {\displaystyle \{x_{n}\}} { y n } {\displaystyle \{y_{n}\}} 是有理数、实数或复数构成的柯西列,那么 { x n + y n } {\displaystyle \{x_{n}+y_{n}\}} { x n y n } {\displaystyle \{x_{n}y_{n}\}} 也是柯西列。

在一个拓扑向量空间 X {\displaystyle X} 中同样可以定义一个柯西列:在 X {\displaystyle X} 选择一个 0 {\displaystyle 0} 局部基 B {\displaystyle {\mathcal {B}}} ,如果对于 B {\displaystyle {\mathcal {B}}} 中的任何元素 V {\displaystyle V} ,存在一个正整数 N {\displaystyle N} 使得对于任意的 m , n > N {\displaystyle m,n>N} 而言,序列 { x k } {\displaystyle \{x_{k}\}} 满足 x m x n V {\displaystyle x_{m}-x_{n}\in V} ,那么这个序列就称为一个柯西列。

如果这个拓扑向量空间 X {\displaystyle X} 上有恰好可以引入一个平移不变度量 d {\displaystyle d} ,那么上述方法定义的柯西列和利用这个度量 d {\displaystyle d} 定义的柯西列是等价的。

在一个群中,同样可以定义柯西列:

H = { H r } {\displaystyle H=\{H_{r}\}} 表示一列有限指标的递减的 G {\displaystyle G} 的正规子群,那么群 G {\displaystyle G} 中一个序列 { x n } {\displaystyle \{x_{n}\}} 称为柯西列(对于上述 H {\displaystyle H} 而言),当且仅当对于任意的 r {\displaystyle r} ,存在正整数 N {\displaystyle N} 使得对于任意的 m , n > N {\displaystyle m,n>N} ,都有 x m x n 1 H {\displaystyle x_{m}x_{n}^{-1}\in H}

如果用 C {\displaystyle C} 表示所有的这样定义的柯西列组成的集合,那么 C {\displaystyle C} 在序列点点相乘的意义下构成一个新的群。而且 C 0 {\displaystyle C_{0}} ,即所有空序列(对于任意 r {\displaystyle r} ,存在 N {\displaystyle N} 使得对于任意 n > N {\displaystyle n>N} ,都有 n H r {\displaystyle n\in H_{r}} )构成了 C {\displaystyle C} 的正规子群。而商群 C / C 0 {\displaystyle C/C_{0}} 称为 G {\displaystyle G} 相对于 H {\displaystyle H} 的完备化(。

可以证明,这个完备化同构与序列 { G / H 4 } {\displaystyle \{G/H_{4}\}} 的逆向极限(英语:inverse limit)同构。

如果 H {\displaystyle H} 是个共尾序列(即任何有限的正规子群均包含某个 H r {\displaystyle H_{r}} ),那么这个完备化在与 { G / H } H {\displaystyle \{G/H\}_{H}} 的逆极限同构的意义下是规范的,这里的 H {\displaystyle H} 跑遍所有有限的正规子群。

相关

  • 数学古希腊人是数学的奠基者,古希腊的数学在数学史中占有头等重要的地位。古希腊人提出了公理化体系、形式逻辑,使用逻辑证明、演绎法,强调量化和系统化,使数学成为一门严密的系统的
  • .it.it为意大利国家和地区顶级域(ccTLD)的域名。A .ac .ad .ae .af .ag .ai .al .am .ao .aq .ar .as .at .au .aw .ax .az   B .ba .bb .bd .be .bf .bg .bh .bi .bj .bm .b
  • 杰布·布什约翰·艾理斯·“杰布”·布什(John Ellis "Jeb" Bush,1953年2月11日-),美国共和党政治人物,第43任佛罗里达州州长,也是第一位得以连任该州州长职位的共和党籍州长。杰布·布什是美
  • 中性白血球中性粒细胞(英语:Neutrophil 或 Neutrocyte,或全称 Neutrophilic Granulocyte)亦称嗜中性粒细胞或嗜中性多核球,是血液白细胞的一种,也是哺乳动物血液中最主要的一种白细胞。中性
  • 曼森家族查尔斯·曼森曼森家族(英语:Manson Family)是于1960年代末在加利福尼亚州建立的一个公社以及公认的邪教团体,由查尔斯·曼森所领导的,该团体由大约100名追随者组成,他们过着非常规
  • 光南大批发光南大批发连锁店(英语:Kuang Nan Fashion Shop),公司名称为笑笑笑国际股份有限公司(英语:Shiaw Shiaw Shiaw International Co., Ltd.),是一家台湾的中型零售业者,其前身为光南唱片
  • 劳勃·瑞福小查尔斯·罗伯特·雷德福(英语:Charles Robert Redford, Jr.,1936年8月18日-)是美国一名奥斯卡获奖演员、导演、监制和商人。他是圣丹斯电影节的创办人。2018年8月6日,雷德福宣布
  • 1965年改革1965年苏联经济改革,有时被称为柯西金改革(俄语:Косыгинская реформа) 或利别尔曼改革,是苏联经济的一系列有计划的变化。 这些改革的核心是引进 盈利能力 和
  • 淮南节度使淮南节度使,唐朝在淮南道设立的节度使。至德元载(756年)设置,治所在扬州。管辖扬州、楚州、滁州、和州、庐州、寿州、舒州、光州、蕲州、安州、黄州、申州、沔州。十二月,安州、
  • 白僵菌属白僵菌属(学名:)是子囊菌门虫草菌科(英语:Cordycipitaceae)下的一个属,行无性生殖。白僵菌属下属的种通常是昆虫的病原菌,其有性态(英语:Teleomorph, anamorph and holomorph)为虫草属(