线圈

✍ dations ◷ 2025-02-23 14:00:40 #线圈
电感器(inductor)是一种电路元件,会因为通过的电流的改变而产生电动势,从而抵抗电流的改变。这属性称为电感。电感元件有许多种形式,依据外观与功用的不同,而会有不同的称呼。以漆包线绕制多圈状,常作为电磁铁使用和变压器等中使用的电感也依外观称为线圈(coil)。用以对高频提供较大电抗,通过直流或低频的,依功用常称为扼流圈(choke),又称抗流圈。常配合铁磁性材料,安装在变压器、电动机和发电机中使用的较大电感,也称绕组(Winding)。导线穿越磁性物质,而无线圈状,常充当高频滤波作用的小电感,依外观常称为磁珠(Bead)。电感器一词,通常只用来称呼以自感或其效应为主要工作情况的元件。非以自感为主的,习惯上大多称呼它的其他名称,平常不以电感器称呼,例如:变压器、马达里的电磁线圈绕组等。在中文里,电感器一词在口语上也会被简称为电感,但如需严谨表达为实体物件的情况,仍宜称为电感器。通俗地说,穿过一个闭合导体回路的磁感线条数称为磁通量。由于穿过闭合载流导体(很多情况是线圈)的磁场在其内部形成的磁通量变化,根据法拉第电磁感应定律,闭合导体将产生一个电动势以“反抗”这种变化,即电磁感应现象。电感元件的电磁感应分为自感应和互感应,自身磁场在线圈内产生磁通量变化导致的电磁感应现象,称为“自感应”现象;外部磁场在线圈里磁通量变化产生的电磁感应现象,称为“互感应”现象。比如,当电流以1安培/秒的变化速率穿过一个1亨利的电感元件,则引起1伏特的感应电动势。当缠绕导体的导线匝数增多,导体的电感也会变大,不仅匝数,每匝(环路)面积,连缠绕材料都会影响电感大小。此外,用高渗透性材料缠绕导体也会令磁通量增加。电感元件即利用这种感应的原理,在电路中发挥了许多作用。一个电感元件储存的能量(单位:焦耳)等于流经它的电流建立磁场所做的功,其值由下式给出:其中L为电感,I为流经电感的电流。上述的关系仅适用在电流和磁通呈线性,尚未进入磁饱和的电感元件。若针对电感元件,要计算在时间 t 0 {displaystyle t_{0}} 到 t 1 {displaystyle t_{1}} 之间,电感元件可以储存的能量,可以用下式计算:电流可以被模拟为水流一样,电感元件相当于被水流驱动的涡轮中的“飞轮”。电压与电流改变的量成正比,所以电流的急速改变会产生强力的电压。相似地,流向涡轮的水流被突然干扰时会产生巨大的压力。于变压器中的磁力交流没有被有效地以模型形式模拟出来。电感可由电导材料盘绕磁芯制成,典型的如铜线,也可把磁芯去掉或者用铁磁性材料代替。比空气的磁导率高的芯材料可以把磁场更紧密的约束在电感元件周围,因而增大了电感。电感有很多种,大多以外层瓷釉线圈(enamel coated wire)环绕铁素体线轴制成,而有些防护电感把线圈完全置于铁素体内。一些电感元件的芯可以调节。由此可以改变电感大小。小电感能直接蚀刻在印刷电路板上,用一种铺设螺旋轨迹的方法。小值电感也可用以制造晶体管同样的工艺制造在集成电路中。在这些应用中,铝互连线被经常用做传导材料。不管用何种方法,基于实际的约束应用最多的还是一种叫做“旋转子”的电路,它用一个电容和主动元件表现出与电感元件相同的特性。用于隔高频的电感元件经常用一根穿过磁柱或磁珠的金属丝构成。像电容元件反抗电压的变化一样,电感元件反抗电流的变化。一个理想电感元件应对直流电不呈电阻性,然而只有超导电感元件才会产生零电阻。一般来说,随时间变化的电压v(t)与随时间变化的电流i(t)在一个电感为L的电感元件上呈现的关系可以用微分方程来表示:当有正弦交流电穿过电感元件时,会产生正弦电压。电压的幅度与电流的幅度( I P {displaystyle I_{P}} )与电流的频率(f)的乘积成比例。在这种情况下,电流与电压的相位相差90度,(电流落后电压)当于电路分析中使用拉普拉斯变换,一个没有初始电流的理想电感元件的阻抗能于s域被表述成:如果电感元件没有起始电流,那它可以被表述成:(请留意电压来源应该有与初始电流相反的极性)并联电路中的电感元件每个都有相同的电势差。其总的等效电感(Leq):通过串联电感的电流保持不变,但每个电感元件上的电压可不同。其电压之和等于总电压。总电感:这种简单的关系只有在没有磁场互耦(mutual coupling)的条件下才成立。一个理想的电感元件是不会因流经线圈的电流的大小而改变其敏感度。但是于实际环境下,线圈内的金属线会令电感元件带有绕组电阻。由于绕组电阻是以串联著电感元件的电阻形式出现,所以亦被称为串联电阻。由于串联电阻的存在,实际电感元件的特性会不同于理想电感,可以用品质因数表示电感和电阻之的比例。一个电感元件的品质因数(简称Q)是它处于某一特定频率时,它的电感电抗和电阻之间的比例,这个比例是用来量度电感元件的有效程度。品质因数越高,电感元件的表现越相似现想中电感元件的表现。电感元件的品质因数Q能由以下方程式可得,R是电感元件的内部电抗:使用铁磁性材料而其他部分不变的话,电感会上升,因此品质因数会被提高。但是若频率上升时,铁磁性材料的电感会降低,也就是电感是频率的变数。所以于甚高频(VHF)或更高频的情况下,会倾向使用空气核心。使用铁磁性核心的电感元件可能会于大量电流流入时进入饱和状态,引致电感及品质因数下降。使用空气核心能避免这种现象。一个经良好设计的含空气核心的电感元件能有高达几百的品质因数。一个近乎理想的电感元件(即近乎无限的的品质因数)可以由以下方法所制:将由超导合金所制的线圈浸入液态氦或液态氮中。这会令电线处于极低温状态,而绕组电阻会消失。因为超导电感元件的效能极近乎理想中的电感元件,它可以储存大量电能于磁场内。(见超导储能)相同条件下内阻越大,品质因数越小。品质因数可以看做是衡量电感元件好坏的标准之一,品质因数越高通常意味着电感的质量越好。以下的表列出一些简单形状电感器,其电感量近似公式。3.短圆柱盘绕无芯(空气)电感元件的电感: L = r 2 N 2 9 r + 10 l {displaystyle L={frac {r^{2}N^{2}}{9r+10l}}}4.多层空气芯电感元件: L = 0.8 r 2 N 2 6 r + 9 l + 10 d {displaystyle L={frac {0.8r^{2}N^{2}}{6r+9l+10d}}}5.平螺旋型空芯电感: L = r 2 N 2 ( 2 r + 2.8 d ) × 10 5 {displaystyle L={frac {r^{2}N^{2}}{(2r+2.8d)times 10^{5}}}}因此一个8匝的螺旋型盘绕,平均半径25mm,深度10mm的电感元件,电感为5.13µH。同样的公式改用英制单位: L = r 2 N 2 8 r + 11 d {displaystyle L={frac {r^{2}N^{2}}{8r+11d}}}6.环形铁心的绕阻电感(核心物料的的圆形横切面的相对导率为 μ r {displaystyle mu _{r}} )L = μ 0 μ r N 2 r 2 D {displaystyle L=mu _{0}mu _{r}{frac {N^{2}r^{2}}{D}}}电感元件广泛的应用在模拟电路与信号处理过程中。

相关

  • 先天免疫系统先天免疫系统(英语:Innate immunity)又称为非特异性免疫、固有免疫、非专一性防御,包括一系列的细胞及相关机制,可以以非特异性的方式抵御外来感染。先天免疫系统的细胞会非特异
  • 灭绝灭绝是指一个物种完全消失的自然过程。由于生存竞争的关系,灭绝消灭了一部分物种,但同时也为其他物种的发展和新物种的产生创造了条件。例如白垩纪末期的大灭绝事件,导致了恐龙
  • 哈尔基斯哈尔基斯(英语:Chalcis;现代希腊语:Χαλκίδα ;古希腊语:Χαλκίς, -ίδος),希腊优卑亚岛城市,位于该岛西部,与希腊大陆隔尤里普斯海峡。哈尔基斯为该岛主要城镇,埃维亚州
  • 胶子在粒子物理学中,胶子(gluon)是负责在两个夸克之间传递强作用力的基本粒子,类似光子负责在两个带电粒子之间传递电磁力一般。用科学术语来说明,胶子是量子色动力学用来在两个夸克
  • 广翅鲎板足鲎目(学名:Eurypterida)又名广翅鲎目、广翼目,通称板足鲎、广翅鲎、海蝎,是一类已灭绝的节肢动物,大约有300种已知的板足鲎。诞生于奥陶纪,距今约4亿6700万年前,繁盛于志留纪,灭
  • 扁蚜科扁蚜科(Hormaphididae)是蚜总科下的一个科。 该科生物在世界上已发现43属215种,其中有将近一半发现与中国。其所有成员均为破坏严重的农业害虫,较著名者有居竹舞蚜、甘蔗粉角蚜
  • 病原相关分子模式病原相关分子模式(Pathogen-associated molecular patterns, PAMP)是与病原体相关的小分子序列。它们可被Toll样受体和其它模式识别受体(pattern recognition receptors, PRR)识
  • 拉丁语短语列表拉丁语短语列表(List of Latin phrases)以下是一些常用的拉丁文短语。拉丁语是罗马帝国的官方语言,现在欧洲的许多语言都含有拉丁语的借词。许多拉丁语词汇也是从古希腊文引入
  • 曾庆存北京大学(本科)曾庆存(1935年5月4日-),中国气象学家、大气科学家和地球流体力学家。现任中国科学院大学大气物理研究所研究员、博士生导师。1935年5月,曾庆存出生于广东省阳江市的
  • 激光干涉空间天线激光干涉空间天线(Laser Interferometer Space Antenna,LISA)是一个由美国国家航空航天局(NASA)和欧洲空间局(ESA)合作的引力波探测计划,由于募款问题,美国国家航空航天局于2011年宣