阿基米德公理

✍ dations ◷ 2025-04-02 11:04:16 #阿基米德公理
在抽象代数和分析学中,以古希腊数学家阿基米德命名的阿基米德公理(又称阿基米德性质),是一些赋范的群、域和代数结构具有的一个性质。粗略地讲,它是指没有无穷大或无穷小的元素的性质。由于它出现在阿基米德的《论球体和圆柱体》的公理五,1883年,奥地利数学家Otto Stolz(英语:Otto Stolz)赋予它这个名字。这个概念源于古希腊对量的理论;如大卫·希尔伯特的几何公理,有序群、有序域和局部域的理论在现代数学中仍然起着重要的作用。阿基米德公理可表述为如下的现代记法: 对于任何实数 x {displaystyle x} ,存在自然数 n {displaystyle n} 有 n > x {displaystyle n>x} 。在现代实分析中,这不是一个公理。它退却为实数具完备性的结果。基于这理由,常以阿基米德性质的叫法取而代之。简单地说,阿基米德性质可以认为以下二句叙述的任一句:这等价于说,对于任何正实数 a {displaystyle a} 、 b {displaystyle b} ,如果 a < b {displaystyle a<b} ,则存在自然数 n {displaystyle n} ,有实数的完备性蕴含了阿基米德性质,证明利用了反证法:假设对所有 n {displaystyle n} , n a < b {displaystyle na<b} (注意 n a {displaystyle na} 表示 n {displaystyle n} 个 a {displaystyle a} 相加),令 S = { n a | n = 1 , 2 , 3 , . . . } {displaystyle S={na|n=1,2,3,...}} ,则 b {displaystyle b} 为 S {displaystyle S} 的上界( S {displaystyle S} 上方有界,依实数完备性,必存在最小上界,令其为 α {displaystyle alpha } ),于是 ∀ n = 1 , 2 , 3 , . . . {displaystyle forall n=1,2,3,...} 有得出 α − a {displaystyle alpha -a} 也是 S {displaystyle S} 的一个上界,这与 α {displaystyle alpha } 是最小上界矛盾。这样就由实数的完备性推出了阿基米德性质,但阿基米德性推不出实数的完备性,因为有理数满足阿基米德性,但并不是完备的。

相关

  • 圣安东尼奥圣安东尼奥(英语:San Antonio)位于美国得克萨斯州中南部,是美国得克萨斯州人口第二多的城市(排在休斯敦之后),同时也是美国人口第七多的城市。据2005年美国人口普查局估计,圣安东尼
  • 听小骨中耳内有三块听小骨(ossicles、auditory ossicles)都是依其形状来命名的:(1)排列方式:锤骨相连在砧骨上,砧骨相连在镫骨上。即镫骨与砧骨相连而砧骨的另一段与锤骨相连。锤骨将力传
  • 万叶陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧  书法 ‧ 飞白书笔画 ‧ 
  • 科学论实证主义 · 反实证主义(英语:Antipositivism) 结构主义 · 冲突理论 中层理论 · 形式理论 批判理论人口 · 团体 · 组织(英语:Organizational theory) · 社会化 社会性
  • 罗马骑士阶级罗马骑士阶级(翻译自拉丁语:Equites),简称骑士阶级,是古罗马共和国时期两个上层阶级中较低等的一个阶级,位列元老阶级之下。虽然该阶级同样被译为中文的“骑士阶级”,但是其实与中
  • 碧冬茄属碧冬茄属是一类原产于南美洲的草本植物,有喇叭形花,类似牵牛花,又称矮牵牛属,目前广泛被世界各地引种,作为园艺花卉,存在各色品种及杂交形成的碧冬茄。作为园艺品种的矮牵牛,是由野
  • 范佩西罗宾·范佩西(荷兰语:Robin van Persie,1983年8月6日-),生于荷兰鹿特丹,荷兰已退役足球员,司职中锋。世界足坛最佳荷兰巨星之一。现职英国电信体育台足球评述员。范佩西在一个艺术之
  • 约翰·卡蒂约翰·约瑟夫·卡蒂(英语:John Joseph Carty,1861年4月14日-1932年12月27日),美国电气工程师,电话线和相关技术的主要贡献者。卡蒂曾获得IEEE爱迪生奖章。作为AT&T的首席工程师,他对
  • 钱逸泰钱逸泰(1941年1月3日-),中国无机化学家。1941年生于江苏无锡。1962年毕业于山东大学化学系。中国科学技术大学化学系教授,山东大学化学化工学院教授。2005年起任山东大学胶体与界
  • 胰岛素类似物胰岛素类似物(英语:Insulin analog),又称餐时胰岛素,泛指通过对胰岛素结构的修饰模拟正常胰岛素的分泌,并模拟胰岛素生理作用的物质。在20世纪90年代,随着科学家对胰岛素结构和成分