置换

✍ dations ◷ 2025-10-25 16:49:53 #置换
排列(英语:Permutation)是将相异对象或符号根据确定的顺序重排。每个顺序都称作一个排列。例如,从一到六的数字有720种排列,对应于由这些数字组成的所有不重复亦不阙漏的序列,例如"4, 5, 6, 1, 2, 3" 与1, 3, 5, 2, 4, 6。置换(排列)的广义概念在不同语境下有不同的形式定义:此节使用排列的传统定义。从 n {displaystyle n} 个相异元素中取出 k {displaystyle k} 个元素, k {displaystyle k} 个元素的排列数量为:其中P意为Permutation(排列),!表示阶乘运算。以赛马为例,有8匹马参加比赛,玩家需要在彩票上填入前三胜出的马匹的号码,从8匹马中取出3匹马来排前3名,排列数量为:因为一共存在336种可能性,因此玩家在一次填入中中奖的概率应该是:不过,中国大陆的教科书则是把从n取k的情况记作 P n k {displaystyle P_{n}^{k}} 或 A n k {displaystyle A_{n}^{k}} (A代表Arrangement,即排列)。上面的例子是建立在取出元素不重复出现状况。从 n {displaystyle n} 个元素中取出 k {displaystyle k} 个元素, k {displaystyle k} 个元素可以重复出现,这排列数量为:以四星彩为例,10个数字取4个数字,因可能重复所以排列数量为:这时的一次性添入中奖的概率就应该是:在集合论与抽象代数等领域中,“置换”一词被保留为集合(通常是有限集)到自身的双射的一个称呼。例如对于从一到十的数字构成的集合,其置换将是从集合 { 1 , … , 10 } {displaystyle {1,ldots ,10}} 到自身的双射。因此,置换是拥有相同定义域与上域的函数,且其为双射的。一个集合上的置换在函数合成运算下构成一个群,称为对称群或置换群。以下仅考虑有限集上的置换(视为双射),由于 n {displaystyle n} 个元素的有限集可以一一对应到集合 { 1 , … , n } {displaystyle {1,ldots ,n}} ,有限集的置换可以化约到形如 {1, ..., n} 的集合之置换。此时有两种表示法。第一,利用矩阵符号将自然排序写在第一列,而将置换后的排序写在第二列。例如:表示集合 {1,2,3,4,5} 上的置换 s : s ( 1 ) = 2 , s ( 2 ) = 5 , s ( 3 ) = 4 , s ( 4 ) = 3 , s ( 5 ) = 1 {displaystyle s:s(1)=2,s(2)=5,s(3)=4,s(4)=3,s(5)=1} 。第二,借由置换的相继作用描述,这被称为“轮换分解”。分解方式如下:固定置换 s {displaystyle s} 。对任一元素 x {displaystyle x} ,由于集合有限而 s {displaystyle s} 是双射,必存在正整数 N {displaystyle N} 使得 s N ( x ) = x {displaystyle s^{N}(x)=x} ,故可将置换 s {displaystyle s} 对 x {displaystyle x} 的相继作用表成 ( x s ( x ) s 2 ( x ) ⋯ s m − 1 ( x ) ) {displaystyle (x;s(x);s^{2}(x)cdots s^{m-1}(x))} ,其中 m {displaystyle m} 是满足 s m ( x ) = x {displaystyle s^{m}(x)=x} 的最小正整数。称上述表法为 x {displaystyle x} 在 s {displaystyle s} 下的轮换, m {displaystyle m} 称为轮换的长度。我们在此将轮换视作环状排列,例如是同一个轮换。由此可知 x {displaystyle x} 在 s {displaystyle s} 下的轮换只决定于 x {displaystyle x} 在 s {displaystyle s} 作用下的轨道,于是,任两个元素 x , y {displaystyle x,y} 或给出同一个轮换,或给出不交的轮换。我们将轮换 ( x 1 ⋯ x m ) {displaystyle (x_{1};cdots x_{m})} 理解为一类特殊的置换:仅须定义置换 s {displaystyle s} 为 s : x 1 ↦ x 2 , … , x m − 1 ↦ x m , x m ↦ x 1 {displaystyle s:x_{1}mapsto x_{2},ldots ,x_{m-1}mapsto x_{m},x_{m}mapsto x_{1}} ,而在其它元素上定义为恒等映射。不交的轮换在函数合成的意义下可相交换。因此我们可以将集合 {1, ..., n} 对一置换分解成不交轮换的合成,此分解若不计顺序则是唯一的。例如前一个例子的 s {displaystyle s} 就对应到 (1 2 5) (3 4) 或 (3 4) (1 2 5)。轮换一是种特殊的排列。如果给定 f : X → X {displaystyle f:Xrightarrow X} 是 X {displaystyle X} 上的一个排列, A {displaystyle A} 为 X {displaystyle X} 上的一个子集。若有∃ A ∈ X , A = { x 1 , x 2 , ⋯ , x l } {displaystyle exists Ain X,A={x_{1},x_{2},cdots ,x_{l}}}{ f ( x 1 ) = x 2 , f ( x 2 ) = x 3 , ⋯ , f ( x l ) = x 1 f ( x ) = x , x ∉ A {displaystyle {begin{cases}f(x_{1})=x_{2},f(x_{2})=x_{3},cdots ,f(x_{l})=x_{1}\f(x)=x,xnot in Aend{cases}}}则称 f {displaystyle f}  为一个轮换。 l {displaystyle l}  为轮换的长度。在上节的轮换表法中,长度等于二的轮换称为换位,这种轮换 ( x y ) {displaystyle (x;y)} 不外是将元素 x , y {displaystyle x,y} 交换,并保持其它元素不变。对称群可以由换位生成。由于轮换长度为 l {displaystyle l} 的轮换 C {displaystyle C} 可分解为最少 k = l − 1 {displaystyle k=l-1} 个换位,若 k {displaystyle k} 为偶数,则 C {displaystyle C} 为偶轮换,否则C为奇轮换。即轮换的长度为奇数,该轮换为偶轮换;轮换的长度为偶数,该轮换为奇轮换。由此可定义任一排列的奇偶性,并可证明:一个排列是偶排列的充要条件是它可以由偶数个换位生成。偶轮换在置换群中构成一个正规子群,称为交错群。某些旧课本将排列视为变量值的赋值。在计算机科学中,这就是将值赋予变量的赋值运算子,并要求每个值只能赋予一个变量。赋值/代入的差别表明函数式编程与指令式编程之差异。纯粹的函数式编程并不提供赋值机制。现今数学的惯例是将排列看作函数,其间运算看作函数合成,函数式编程也类似。就赋值语言的观点,一个代入是将给定的值“同时”重排,这是个有名的问题。取一个无向图G,将图G的n个顶点标记v1,...,vn,对应一个排列( s(1) s(2) ... s(n) ),当且仅当s(i) < s(j) 而 i > j,则图的vi和vj相连,这样的图称为排列图。排列图的补图必是排列图。多数计算机都有个计算排列数的 nPr 键。然而此键在一些最先进的桌上型机种中却被隐藏了。例如:在 TI-83 中,按 MATH、三次右键、再按二。在卡西欧的图形计算机中,按 OPTN,一次右键(F6)、PROB(F3)、nPr(F2)。多数试算表软件都有函式 PERMUT(Number,Number chosen),用以计算排列。Number 是描述对象数量的一个整数,Number chosen 是描述每个排列中所取对象数的整数。

相关

  • 以撒以撒(希伯来语: יִצְחָק‎;阿拉伯语: إسحٰق;英语:Isaac),又译依撒格或易司哈格,是《旧约圣经·创世记》中的人物,亚伯拉罕的嫡子,原配撒拉所生的独生子,以扫和雅各的父亲
  • 显著性差异显著性差异(ρ),是统计学上对数据差异性的评价。当数据之间具有了显著性差异,就说明参与比对的数据应该不是来自于同一总体(population),而是来自于具有差异的两个不同总体,换句话
  • ABO血型系统ABO血型系统是人类最早认识也是最为重要的血型系统。ABO血型由红细胞膜上的不同抗原所决定,与人类输血时发生的溶血反应密切相关,具有重要的临床意义。ABO抗原也存在于牛、羊
  • 澳大利亚国防军澳大利亚国防军(英文:Australian Defence Force,缩写ADF)是负责澳大利亚国防的军事组织,包括澳大利亚陆军,澳大利亚皇家海军和澳大利亚皇家空军,总共有80,561名官兵在役(包括55,068
  • Pentax宾得(PENTAX)是日本光学设备厂商理光映像(RICOH IMAGING)旗下的相机、望远镜品牌,也是豪雅(HOYA)旗下的医疗器械品牌。该品牌在2011年7月1日前原为豪雅公司(HOYA株式会社)的相机、数
  • 无纺布无纺布(non-woven fabric, non-woven cloth),又称不织布,是一种以针轧机械或梳理机械处理各种纤维原料,用高压形成或粘合生产的一种布状物。无纺布也分新旧技术或广义狭义。旧技
  • 226年中国西方
  • 祠堂祠堂,又称家庙、祖堂、公厅,是基于宗法制度,用于供奉和祭祀祖先的祠,其又具有从事家族宣传、执行族规家法、议事宴饮的功能。 用于举办家族内子孙的婚、丧、寿、喜等事,还可以作
  • 神龙翼龙科详见内文神龙翼龙科(Azhdarchidae)是翼龙目神龙翼龙超科的一科,主要生存于白垩纪晚期。2010年在白垩纪早期(约1亿4000万年前的贝里亚阶)地层,发现一个翼龙类的脊椎骨,可能属于神龙
  • 湘南土话湘南土话也称为平话,主要分布在湖南省南部的郴州和永州地区,内部差异较大。湘南土话不同于流行于湖南省大部分地区的湘语,与郴州市城区流行的郴州官话更是截然不同。湘南土话是