首页 >
置换
✍ dations ◷ 2025-06-28 13:56:06 #置换
排列(英语:Permutation)是将相异对象或符号根据确定的顺序重排。每个顺序都称作一个排列。例如,从一到六的数字有720种排列,对应于由这些数字组成的所有不重复亦不阙漏的序列,例如"4, 5, 6, 1, 2, 3" 与1, 3, 5, 2, 4, 6。置换(排列)的广义概念在不同语境下有不同的形式定义:此节使用排列的传统定义。从
n
{displaystyle n}
个相异元素中取出
k
{displaystyle k}
个元素,
k
{displaystyle k}
个元素的排列数量为:其中P意为Permutation(排列),!表示阶乘运算。以赛马为例,有8匹马参加比赛,玩家需要在彩票上填入前三胜出的马匹的号码,从8匹马中取出3匹马来排前3名,排列数量为:因为一共存在336种可能性,因此玩家在一次填入中中奖的概率应该是:不过,中国大陆的教科书则是把从n取k的情况记作
P
n
k
{displaystyle P_{n}^{k}}
或
A
n
k
{displaystyle A_{n}^{k}}
(A代表Arrangement,即排列)。上面的例子是建立在取出元素不重复出现状况。从
n
{displaystyle n}
个元素中取出
k
{displaystyle k}
个元素,
k
{displaystyle k}
个元素可以重复出现,这排列数量为:以四星彩为例,10个数字取4个数字,因可能重复所以排列数量为:这时的一次性添入中奖的概率就应该是:在集合论与抽象代数等领域中,“置换”一词被保留为集合(通常是有限集)到自身的双射的一个称呼。例如对于从一到十的数字构成的集合,其置换将是从集合
{
1
,
…
,
10
}
{displaystyle {1,ldots ,10}}
到自身的双射。因此,置换是拥有相同定义域与上域的函数,且其为双射的。一个集合上的置换在函数合成运算下构成一个群,称为对称群或置换群。以下仅考虑有限集上的置换(视为双射),由于
n
{displaystyle n}
个元素的有限集可以一一对应到集合
{
1
,
…
,
n
}
{displaystyle {1,ldots ,n}}
,有限集的置换可以化约到形如 {1, ..., n} 的集合之置换。此时有两种表示法。第一,利用矩阵符号将自然排序写在第一列,而将置换后的排序写在第二列。例如:表示集合 {1,2,3,4,5} 上的置换
s
:
s
(
1
)
=
2
,
s
(
2
)
=
5
,
s
(
3
)
=
4
,
s
(
4
)
=
3
,
s
(
5
)
=
1
{displaystyle s:s(1)=2,s(2)=5,s(3)=4,s(4)=3,s(5)=1}
。第二,借由置换的相继作用描述,这被称为“轮换分解”。分解方式如下:固定置换
s
{displaystyle s}
。对任一元素
x
{displaystyle x}
,由于集合有限而
s
{displaystyle s}
是双射,必存在正整数
N
{displaystyle N}
使得
s
N
(
x
)
=
x
{displaystyle s^{N}(x)=x}
,故可将置换
s
{displaystyle s}
对
x
{displaystyle x}
的相继作用表成
(
x
s
(
x
)
s
2
(
x
)
⋯
s
m
−
1
(
x
)
)
{displaystyle (x;s(x);s^{2}(x)cdots s^{m-1}(x))}
,其中
m
{displaystyle m}
是满足
s
m
(
x
)
=
x
{displaystyle s^{m}(x)=x}
的最小正整数。称上述表法为
x
{displaystyle x}
在
s
{displaystyle s}
下的轮换,
m
{displaystyle m}
称为轮换的长度。我们在此将轮换视作环状排列,例如是同一个轮换。由此可知
x
{displaystyle x}
在
s
{displaystyle s}
下的轮换只决定于
x
{displaystyle x}
在
s
{displaystyle s}
作用下的轨道,于是,任两个元素
x
,
y
{displaystyle x,y}
或给出同一个轮换,或给出不交的轮换。我们将轮换
(
x
1
⋯
x
m
)
{displaystyle (x_{1};cdots x_{m})}
理解为一类特殊的置换:仅须定义置换
s
{displaystyle s}
为
s
:
x
1
↦
x
2
,
…
,
x
m
−
1
↦
x
m
,
x
m
↦
x
1
{displaystyle s:x_{1}mapsto x_{2},ldots ,x_{m-1}mapsto x_{m},x_{m}mapsto x_{1}}
,而在其它元素上定义为恒等映射。不交的轮换在函数合成的意义下可相交换。因此我们可以将集合 {1, ..., n} 对一置换分解成不交轮换的合成,此分解若不计顺序则是唯一的。例如前一个例子的
s
{displaystyle s}
就对应到 (1 2 5) (3 4) 或 (3 4) (1 2 5)。轮换一是种特殊的排列。如果给定
f
:
X
→
X
{displaystyle f:Xrightarrow X}
是
X
{displaystyle X}
上的一个排列,
A
{displaystyle A}
为
X
{displaystyle X}
上的一个子集。若有∃
A
∈
X
,
A
=
{
x
1
,
x
2
,
⋯
,
x
l
}
{displaystyle exists Ain X,A={x_{1},x_{2},cdots ,x_{l}}}{
f
(
x
1
)
=
x
2
,
f
(
x
2
)
=
x
3
,
⋯
,
f
(
x
l
)
=
x
1
f
(
x
)
=
x
,
x
∉
A
{displaystyle {begin{cases}f(x_{1})=x_{2},f(x_{2})=x_{3},cdots ,f(x_{l})=x_{1}\f(x)=x,xnot in Aend{cases}}}则称
f
{displaystyle f}
为一个轮换。
l
{displaystyle l}
为轮换的长度。在上节的轮换表法中,长度等于二的轮换称为换位,这种轮换
(
x
y
)
{displaystyle (x;y)}
不外是将元素
x
,
y
{displaystyle x,y}
交换,并保持其它元素不变。对称群可以由换位生成。由于轮换长度为
l
{displaystyle l}
的轮换
C
{displaystyle C}
可分解为最少
k
=
l
−
1
{displaystyle k=l-1}
个换位,若
k
{displaystyle k}
为偶数,则
C
{displaystyle C}
为偶轮换,否则C为奇轮换。即轮换的长度为奇数,该轮换为偶轮换;轮换的长度为偶数,该轮换为奇轮换。由此可定义任一排列的奇偶性,并可证明:一个排列是偶排列的充要条件是它可以由偶数个换位生成。偶轮换在置换群中构成一个正规子群,称为交错群。某些旧课本将排列视为变量值的赋值。在计算机科学中,这就是将值赋予变量的赋值运算子,并要求每个值只能赋予一个变量。赋值/代入的差别表明函数式编程与指令式编程之差异。纯粹的函数式编程并不提供赋值机制。现今数学的惯例是将排列看作函数,其间运算看作函数合成,函数式编程也类似。就赋值语言的观点,一个代入是将给定的值“同时”重排,这是个有名的问题。取一个无向图G,将图G的n个顶点标记v1,...,vn,对应一个排列( s(1) s(2) ... s(n) ),当且仅当s(i) < s(j) 而 i > j,则图的vi和vj相连,这样的图称为排列图。排列图的补图必是排列图。多数计算机都有个计算排列数的 nPr 键。然而此键在一些最先进的桌上型机种中却被隐藏了。例如:在 TI-83 中,按 MATH、三次右键、再按二。在卡西欧的图形计算机中,按 OPTN,一次右键(F6)、PROB(F3)、nPr(F2)。多数试算表软件都有函式 PERMUT(Number,Number chosen),用以计算排列。Number 是描述对象数量的一个整数,Number chosen 是描述每个排列中所取对象数的整数。
相关
- 寄生虫寄生虫(英语:parasitic worm)指一种生物,将其一生的大多数时间居住在另外一种生物体内,且会危害被居住的生物体的生理机能,被寄居的生物则称为宿主或寄主。寄生虫会在宿主或寄主体
- 贝达贝达(阿拉伯语:البيضاء (英文:Al Bayda)是位于利比亚东北部绿山省境内的一座城市,人口250000(2010年)。
- 集合集合(英语:Set,或简称集)是基本的数学概念,它是集合论的研究对象,指具有某种特定性质的事物的总体,(在最原始的集合论─朴素集合论─中的定义,集合就是“一堆东西”。)集合里的事物(“
- 菲利波·布鲁内莱斯基菲利波·布鲁内莱斯基(意大利语:Filippo Brunelleschi,“Brunelleschi”又译布鲁内列斯基、伯鲁乃列斯基,1377年-1446年4月15日),意大利文艺复兴早期颇负盛名的建筑师与工程师,他的
- 科布县科布县(英语:Cobb County)是位于美国佐治亞州的一个县,成立于1832年12月3日。根据2000年人口普查,科布县的人口有607,751人,且不断增长。2006年,美国人口调查局估计人口为679,325人
- (OCN)sub2/sub拟卤素或类卤素(pseudohalogen)是一种性质类似卤素的无机化合物,其通式为 XY,其中 X 可以是氰基 CN、氰氧基 OCN、硫氰基 SCN 等官能基,而 Y 可以是上述的物质或是卤素原子。如氰
- 文化全球化文化全球化是一种全球性的现象,指日常生活的经验受商品流通和思想传播影响,在世界范围内反映一种文化表达的标准化。在无线通讯、电子商务、流行文化和国际旅行的效率或吸引力
- 费米子凝聚态费米凝聚(Fermionic condensate):类似于玻色-爱因斯坦凝聚态,由大量费米子占据同一量子态形成。由于泡利不相容原理,不同的费米子不能占据同一量子态,因此费米子不能像玻色子那样
- 藻类植物藻类,又称作悬浮植物,包括数种不同类以光合作用产生能量的生物,其中有属于真核细胞的藻类,也有属于原核细胞的藻类。它们一般被认为是简单的植物,并且一些藻类与比较高等的植物有
- 日本陆军大日本帝国陆军(日语:大日本帝国陸軍/だいにっぽんていこくりくぐん Dai Nippon Teiko kuri kugun */?)是日本军的陆上武装部队,1871年(明治4年)成立、1945年(昭和20年)解散。略称