条件几率

✍ dations ◷ 2025-06-27 22:35:57 #条件几率
本文定义了表征两个或者多个随机变量概率分布特点的术语。条件概率(英语:conditional probability)就是事件A在事件B发生的条件下发生的概率。条件概率表示为P(A|B),读作“A在B发生的条件下发生的概率”。联合概率表示两个事件共同发生的概率。A与B的联合概率表示为 P ( A ∩ B ) {displaystyle P(Acap B)} 或者 P ( A , B ) {displaystyle P(A,B)} 或者 P ( A B ) {displaystyle P(AB)} 。边缘概率是某个事件发生的概率。边缘概率是这样得到的:在联合概率中,把最终结果中不需要的那些事件合并成其事件的全概率而消失(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率)。这称为边缘化(marginalization)。A的边缘概率表示为P(A),B的边缘概率表示为P(B)。需要注意的是,在这些定义中A与B之间不一定有因果或者时间序列关系。A可能会先于B发生,也可能相反,也可能二者同时发生。A可能会导致B的发生,也可能相反,也可能二者之间根本就没有因果关系。例如考虑一些可能是新的信息的概率条件性可以通过贝叶斯定理实现。设 A 与 B 为样本空间 Ω 中的两个事件,其中 P(B)>0。那么在事件 B 发生的条件下,事件 A 发生的条件概率为:条件概率有时候也称为:后验概率。当且仅当两个随机事件A与B满足的时候,它们才是统计独立的,这样联合概率可以表示为各自概率的简单乘积。同样,对于两个独立事件A与B有以及换句话说,如果A与B是相互独立的,那么A在B这个前提下的条件概率就是A自身的概率;同样,B在A的前提下的条件概率就是B自身的概率。当且仅当A与B满足且的时候,A与B是互斥的。因此,换句话说,如果B已经发生,由于A不能和B在同一场合下发生,那么A发生的概率为零;同样,如果A已经发生,那么B发生的概率为零。考虑概率空间Ω(S, σ(S)),其中σ(S)是集S上的σ代数,Ω上对应于随机变量X的概率测度(可以理解为概率分布)为PX;又A∈σ(S),PX(A)≥0(这里可以理解为事件A,A不是零测集)。则∀E∈σ(S),可以定义集函数PX|A如下:PX|A(E)=PX(A∩E)/PX(A)。易知PX|A也是Ω上的概率测度,此测度称为X在A下的条件测度(条件概率分布)。独立性:设A,B∈σ(S),称A,B在概率测度P下为相互独立的,若P(A∩E)=P(A)P(E)。条件概率的谬论是假设P(A|B)大致等于P(B|A)。数学家John Allen Paulos在他的《数学盲》一书中指出医生、律师以及其他受过很好教育的非统计学家经常会犯这样的错误。这种错误可以通过用实数而不是概率来描述数据的方法来避免。P(A|B)与P(B|A)的关系如下所示:下面是一个虚构但写实的例子,P(A|B)与P(B|A)的差距可能令人惊讶,同时也相当明显。若想分辨某些个体是否有重大疾病,以便早期治疗,我们可能会对一大群人进行检验。虽然其益处明显可见,但同时,检验行为有一个地方引起争议,就是有检出假阳性的结果的可能:若有个未得疾病的人,却在初检时被误检为得病,他可能会感到苦恼烦闷,一直持续到更详细的检测显示他并未得病为止。而且就算在告知他其实是健康的人后,也可能因此对他的人生有负面影响。这个问题的重要性,最适合用条件概率的观点来解释。假设人群中有1%的人罹患此疾病,而其他人是健康的。我们随机选出任一个体,并将患病以disease、健康以well表示:假设检验动作实施在未患病的人身上时,有1%的概率其结果为假阳性(阳性以positive表示)。意即:最后,假设检验动作实施在患病的人身上时,有1%的概率其结果为假阴性(阴性以negative表示)。意即:现在,由计算可知:是整群人中健康、且测定为阴性者的比率。是整群人中得病、且测定为阳性者的比率。是整群人中被测定为假阳性者的比率。是整群人中被测定为假阴性者的比率。进一步得出:是整群人中被测出为阳性者的比率。是某人被测出为阳性时,实际上真的得了病的概率。这个例子里面,我们很轻易可以看出P(positive|disease)=99%与P(disease|positive)=50%的差距:前者是你得了病,而被检出为阳性的条件概率;后者是你被检出为阳性,而你实际上真得了病的条件概率。由我们在本例中所选的数字,最终结果可能令人难以接受:被测定为阳性者,其中的半数实际上是假阳性。

相关

  • 减毒病毒疫苗减毒活病毒(英语:attenuated virus,又译弱化病毒)是指致病性被削弱的病毒,这些病毒在毒性降低的同时,仍保有活性,也就是并未被杀死。制造这类病毒的主要目的是为了生产疫苗。与其相
  • 抗糖尿病药抗糖尿病药用于降低血中的葡萄糖浓度来治疗糖尿病。除了胰岛素、艾塞那肽(英语:Exenatide)、利拉鲁肽和普兰林肽(英语:Pramlintide)外,其他的都是经由经由口服,所以又称为口服降血糖
  • 膀胱输尿管返流膀胱输尿管返流(Vesicoureteral Reflux、VUR)是尿从膀胱到输尿管或肾的异常地反向性地流动。尿液的正常运行是从肾脏进经由输尿管到膀胱。出生前胎儿的膀胱输尿管反流的症状
  • 史蒂芬斯-强森症候群史蒂芬斯-强森综合征(英语:Stevens-Johnson syndrome,缩写为 SJS),又称史提芬强生综合征、史帝文生氏-强生综合征、史帝文生-强生综合征,是"多型性红斑"(Erythema multiforme)的一
  • 伪足伪足(英语:Pseudopodia)是细胞伸出类似足状的部分,由原生质体形成的临时细胞器。伪足会依形状分成叶形状伪足、丝形状伪足、根形状伪足,有轴伪足4种。如单细胞生物(变形虫)、黏菌就
  • 展性延展性(ductility and malleability),是物质的一种机械性质,表示材料在受力而产生破裂(fracture)之前,其塑性变形的能力。延展性是由延性、展性两个概念相近的机械性质合称。常见金
  • 第73届奥斯卡金像奖第73届奥斯卡颁奖典礼是美国电影艺术与科学学院旨在奖励2000年最优秀电影的一场晚会,于太平洋时区2001年3月25日下午17点30分(北美东部时区晚上20点30分)在美国加利福尼亚州洛
  • 马德莱娜教堂马德莱娜教堂(Église de la Madeleine)是法国首都巴黎第八区一座教堂,新古典主义风格,周围是52根高20米的科林斯圆柱,原来是为了纪念拿破仑军队的荣耀。马德莱娜教堂位于协和广
  • 非洲联盟非洲联盟(法语:Union Africaine; 英语:African Union)是一个由55个非洲国家组成的区域性国际组织,集政治、经济和军事于一体来整合全非洲的政治实体。非洲联盟于未来有计划统一使
  • 克拉伦斯·沃尔顿·李拉海克拉伦斯·沃尔顿·“沃尔特”·李拉海(英语:Clarence Walton "Walt" Lillehei,1918年10月23日-1999年7月5日),美国外科医生,心内直视手术的先驱开创者之一,被称作“心内直视手术之