条件几率

✍ dations ◷ 2025-11-04 05:14:29 #条件几率
本文定义了表征两个或者多个随机变量概率分布特点的术语。条件概率(英语:conditional probability)就是事件A在事件B发生的条件下发生的概率。条件概率表示为P(A|B),读作“A在B发生的条件下发生的概率”。联合概率表示两个事件共同发生的概率。A与B的联合概率表示为 P ( A ∩ B ) {displaystyle P(Acap B)} 或者 P ( A , B ) {displaystyle P(A,B)} 或者 P ( A B ) {displaystyle P(AB)} 。边缘概率是某个事件发生的概率。边缘概率是这样得到的:在联合概率中,把最终结果中不需要的那些事件合并成其事件的全概率而消失(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率)。这称为边缘化(marginalization)。A的边缘概率表示为P(A),B的边缘概率表示为P(B)。需要注意的是,在这些定义中A与B之间不一定有因果或者时间序列关系。A可能会先于B发生,也可能相反,也可能二者同时发生。A可能会导致B的发生,也可能相反,也可能二者之间根本就没有因果关系。例如考虑一些可能是新的信息的概率条件性可以通过贝叶斯定理实现。设 A 与 B 为样本空间 Ω 中的两个事件,其中 P(B)>0。那么在事件 B 发生的条件下,事件 A 发生的条件概率为:条件概率有时候也称为:后验概率。当且仅当两个随机事件A与B满足的时候,它们才是统计独立的,这样联合概率可以表示为各自概率的简单乘积。同样,对于两个独立事件A与B有以及换句话说,如果A与B是相互独立的,那么A在B这个前提下的条件概率就是A自身的概率;同样,B在A的前提下的条件概率就是B自身的概率。当且仅当A与B满足且的时候,A与B是互斥的。因此,换句话说,如果B已经发生,由于A不能和B在同一场合下发生,那么A发生的概率为零;同样,如果A已经发生,那么B发生的概率为零。考虑概率空间Ω(S, σ(S)),其中σ(S)是集S上的σ代数,Ω上对应于随机变量X的概率测度(可以理解为概率分布)为PX;又A∈σ(S),PX(A)≥0(这里可以理解为事件A,A不是零测集)。则∀E∈σ(S),可以定义集函数PX|A如下:PX|A(E)=PX(A∩E)/PX(A)。易知PX|A也是Ω上的概率测度,此测度称为X在A下的条件测度(条件概率分布)。独立性:设A,B∈σ(S),称A,B在概率测度P下为相互独立的,若P(A∩E)=P(A)P(E)。条件概率的谬论是假设P(A|B)大致等于P(B|A)。数学家John Allen Paulos在他的《数学盲》一书中指出医生、律师以及其他受过很好教育的非统计学家经常会犯这样的错误。这种错误可以通过用实数而不是概率来描述数据的方法来避免。P(A|B)与P(B|A)的关系如下所示:下面是一个虚构但写实的例子,P(A|B)与P(B|A)的差距可能令人惊讶,同时也相当明显。若想分辨某些个体是否有重大疾病,以便早期治疗,我们可能会对一大群人进行检验。虽然其益处明显可见,但同时,检验行为有一个地方引起争议,就是有检出假阳性的结果的可能:若有个未得疾病的人,却在初检时被误检为得病,他可能会感到苦恼烦闷,一直持续到更详细的检测显示他并未得病为止。而且就算在告知他其实是健康的人后,也可能因此对他的人生有负面影响。这个问题的重要性,最适合用条件概率的观点来解释。假设人群中有1%的人罹患此疾病,而其他人是健康的。我们随机选出任一个体,并将患病以disease、健康以well表示:假设检验动作实施在未患病的人身上时,有1%的概率其结果为假阳性(阳性以positive表示)。意即:最后,假设检验动作实施在患病的人身上时,有1%的概率其结果为假阴性(阴性以negative表示)。意即:现在,由计算可知:是整群人中健康、且测定为阴性者的比率。是整群人中得病、且测定为阳性者的比率。是整群人中被测定为假阳性者的比率。是整群人中被测定为假阴性者的比率。进一步得出:是整群人中被测出为阳性者的比率。是某人被测出为阳性时,实际上真的得了病的概率。这个例子里面,我们很轻易可以看出P(positive|disease)=99%与P(disease|positive)=50%的差距:前者是你得了病,而被检出为阳性的条件概率;后者是你被检出为阳性,而你实际上真得了病的条件概率。由我们在本例中所选的数字,最终结果可能令人难以接受:被测定为阳性者,其中的半数实际上是假阳性。

相关

  • 脂质体脂质粒(英语:Liposome)也称为微脂粒,是一种具有靶向给药功能的新型药物制剂。脂质粒是利用磷脂双分子层膜所形成的囊泡包裹药物分子而形成的制剂。由于生物体质膜的基本结构也是
  • 通用通用希腊语(希腊语:Κοινὴ Ἑλληνική;通用希腊语: ἡ κοινὴ διάλεκτος,“通用语”),又译民间希腊语、共通希腊语、科伊内希腊语,或作希利尼话(Hellenisti
  • 抽搐抽搐(英语:Cramp),俗称抽筋,人类身体肌肉系统常见的收缩现象。发作时会使得受伤者感觉疼痛或受到极大压力。常常是因为从静止状态直接转做剧烈运动而导致的。人身体的肌肉是能收
  • 寡行和孤行在排版中,寡行(widow)及孤行(orphan)是一段落开始或结束的一行在一栏的结束或开始处,不同资料定义的寡行和孤行有些不一致,可能某一资料定义的寡行,在另一资料中反而定义为孤行。《
  • 克劳福德·朗克劳福德·威廉森·朗(Crawford Williamson Long, 1815年11月1日-1878年6月16日),美国外科医生和药剂师,一般认为是他首次使用吸入乙醚作为麻醉剂。不过他的工作在好几年中只有同
  • 呼吸道肿瘤新生物、息肉、瘜肉或赘生物(英语:neoplasm),是指身体细胞组织不正常的增生,当生长的数量庞大,便会成为肿瘤(英语:tumor)。而肿瘤亦可以是良性或恶性的。肿瘤(英语:tumor)在医学上是指细
  • 轮藻有胚植物 Embryophyta轮藻门是藻类的一门,包含了最亲近有胚植物的亲戚。因为排除了有胚植物,轮藻门是个并系群(然而有时会限定成单纯只有轮藻目,其为单系群)。藻体构造较复杂,有类
  • 欧洲一体化欧洲一体化是指欧洲整体或部分地区在政治、法律、经济、社会、文化等领域统合的历史。现代欧洲统合主要由欧洲联盟和欧洲委员会推动进行。最初提出欧洲统合构想的是理察·尼
  • 乱枪打鸟乱枪打鸟论证(英语:Gish gallop)是一种非形式谬误,提出大量论述(而这些论述往往不合理或有谬误)使反对者无法一一反驳。在乱枪打鸟论证当中,辩论者在短时间内快速说出大量简短但未
  • 辕固生辕固(?-?),又名辕固生,西汉齐国耏水(今山东省桓台县田庄镇辕固村)人。官至诗经博士、清河王太傅。开创《诗经》的《齐诗》诗派。一些齐人因研究《诗经》而仕途显贵,都是辕固弟子。辕