可计算性理论

✍ dations ◷ 2025-12-04 13:18:43 #可计算性理论
在计算机科学中,可计算性理论(Computability theory)作为计算理论的一个分支,研究在不同的计算模型下哪些算法问题能够被解决。相对应的,计算理论的另一块主要内容,计算复杂性理论考虑一个问题怎样才能被有效的解决。我们考虑关于图灵机的可计算性理论。本节中,固定字符集是{0, 1}, 0 , 1 ∗ {displaystyle {0,1}^{*}} 是所有有限长度字符串的集合。一个语言即是 0 , 1 ∗ {displaystyle {0,1}^{*}} 的一个子集。一个语言L是可以被图灵机所枚举(enumerate)的,如果存在一个图灵机 M {displaystyle M} ,使得输入是L中的串时,M输出“接受”;而对非L中的串,M输出“拒绝”或不停机。而一个语言L'是可以被图灵机所决定(decide)的,如果存在一个图灵机M',使得输入是L中的串时,M输出“接受”;而对非L中的串,M输出“拒绝”。注意这里的区别在于,对于图灵机决定的语言,我们需要在所有输出上,该图灵机都要停机。这样我们可以定义可计算性等级:所有的语言的集合,记为All;递归可枚举语言,即可以被图灵机枚举的语言的集合,记为RE;递归语言,即可以被图灵机决定的语言的集合,记为R。可见 R ⊆ R E ⊆ A l l {displaystyle Rsubseteq REsubseteq All} ,即形成可计算性等级。那么产生相关的问题即是两个包含关系是不是严格的,即是否有在All而不在RE中的语言,以及在RE而不在R中的语言。阿兰·图灵在1930年代的工作表明这两个包含关系都是不严格的,即可以证明存在语言L_d,是不能被图灵机所枚举的,以及存在语言L_u,是不能被图灵机所决定的。证明的主要思想是对角线法。停机问题就是判断任意一个程序是否会在有限的时间之内结束运行的问题。该问题等价于如下的判定问题:给定一个程序P和输入w,程序P在输入w下是否能够最终停止。Post对应问题(Post's correspondence problem)。不可解度的概念定义了不可解的集合之间的相对计算难度。例如,不可解的停机问题显然比任何可解的集合都要难,然而同样不可解的“元停机问题”(即所有具备停机问题的预言机的停机问题)却要难过停机问题,因为具备元停机问题的预言机可以解出停机问题,然而具备停机问题的预言机却不能解出元停机问题。

相关

  • 乳酪乳酪是指由乳酸菌发酵而产生的奶制品,所指的可以是:
  • 因果关系因果关系(英语:causality 或 causation)是一个事件(即“因”)和第二个事件(即“果”)之间的作用关系,其中后一事件被认为是前一事件的结果。一般来说,一个事件是很多原因综合产生的结
  • 脾脏脾脏是脊椎动物的一种外周淋巴器官。人类的脾脏位于腹腔的左上方,由红髓、白髓、边缘区,以及将之被覆的被膜、小梁组成。健康成人的脾脏约重150-200克:68。活体时,脾为暗红色,质
  • 感觉性失语症感觉性失语症 ,又被称为韦尼克氏失语症 , 流畅失语症 ,或接受性失语症。此类患者有语言理解障碍,患者的阅读能力或了解他人谈话内容的能力低下。虽然患者能够说初具语法、速
  • 立氏立克次体立氏立克次体(英语:Rickettsia rickettsii),一种单细胞、革兰氏阴性的立克次体,是落矶山斑点热的病原体,原生于美洲。医学导航:病菌细菌(分类)gr+f/gr+a(t)/gr-p(c/gr-o药物(J1p、w、n、m、
  • 遗传学遗传学是研究生物体的遗传和变异的科学,是生物学的一个重要分支。史前时期,人们就已经利用生物体的遗传特性通过选择育种来提高谷物和牲畜的产量。而现代遗传学,其目的是寻求了
  • 微小纺锤形噬菌体科微小纺锤形噬菌体科(Fuselloviridae)是双链DNA病毒中的一个科,该类病毒外观呈纺锤状,主要感染于古细菌。下有一属:代表种:
  • 环境监测作业环境监测是通过对人类和环境有影响的各种物质的含量、排放量的检测,跟踪环境质量的变化,确定环境质量水平,为环境管理、污染治理等工作提供基础和保证。简单地说,了解环境水
  • BBC英国广播公司(英语:British Broadcasting Corporation;缩写:BBC),是英国一家独立运作的公共媒体,亦是全球最大的新闻媒体(按照雇员人数),资金主要来自于英国国民所缴纳的电视牌照费。B
  • 特拉布宗特拉布宗(土耳其语:Trabzon)是位于黑海南岸的土耳其城市。特拉布宗过去曾于1204年建立特拉比松帝国,是为土耳其版图上的独立国家,以拜占庭人为主。但1461年,帝国被奥斯曼帝国的穆