首页 >
可计算性理论
✍ dations ◷ 2025-12-02 21:44:50 #可计算性理论
在计算机科学中,可计算性理论(Computability theory)作为计算理论的一个分支,研究在不同的计算模型下哪些算法问题能够被解决。相对应的,计算理论的另一块主要内容,计算复杂性理论考虑一个问题怎样才能被有效的解决。我们考虑关于图灵机的可计算性理论。本节中,固定字符集是{0, 1},
0
,
1
∗
{displaystyle {0,1}^{*}}
是所有有限长度字符串的集合。一个语言即是
0
,
1
∗
{displaystyle {0,1}^{*}}
的一个子集。一个语言L是可以被图灵机所枚举(enumerate)的,如果存在一个图灵机
M
{displaystyle M}
,使得输入是L中的串时,M输出“接受”;而对非L中的串,M输出“拒绝”或不停机。而一个语言L'是可以被图灵机所决定(decide)的,如果存在一个图灵机M',使得输入是L中的串时,M输出“接受”;而对非L中的串,M输出“拒绝”。注意这里的区别在于,对于图灵机决定的语言,我们需要在所有输出上,该图灵机都要停机。这样我们可以定义可计算性等级:所有的语言的集合,记为All;递归可枚举语言,即可以被图灵机枚举的语言的集合,记为RE;递归语言,即可以被图灵机决定的语言的集合,记为R。可见
R
⊆
R
E
⊆
A
l
l
{displaystyle Rsubseteq REsubseteq All}
,即形成可计算性等级。那么产生相关的问题即是两个包含关系是不是严格的,即是否有在All而不在RE中的语言,以及在RE而不在R中的语言。阿兰·图灵在1930年代的工作表明这两个包含关系都是不严格的,即可以证明存在语言L_d,是不能被图灵机所枚举的,以及存在语言L_u,是不能被图灵机所决定的。证明的主要思想是对角线法。停机问题就是判断任意一个程序是否会在有限的时间之内结束运行的问题。该问题等价于如下的判定问题:给定一个程序P和输入w,程序P在输入w下是否能够最终停止。Post对应问题(Post's correspondence problem)。不可解度的概念定义了不可解的集合之间的相对计算难度。例如,不可解的停机问题显然比任何可解的集合都要难,然而同样不可解的“元停机问题”(即所有具备停机问题的预言机的停机问题)却要难过停机问题,因为具备元停机问题的预言机可以解出停机问题,然而具备停机问题的预言机却不能解出元停机问题。
相关
- 蛋白质合成抑制剂蛋白质合成抑制剂是通过扰乱直接导致新的蛋白质生成的过程来阻止或减缓细胞生长或增殖的物质。虽然对该定义的广泛解释可用于描述几乎所有抗生素,但在实践中,它通常是指在核糖
- 新壁总域新壁总域(Neomura)是一个演化支,由古菌域和真核生物域两域生物所组成。这个概念是由2002年被汤玛斯·卡弗利尔-史密斯所提出。他假设新壁总域成员演化自真细菌,其中一个主要的改
- 克鲁尔-布西症候群克鲁尔-布西综合征(Klüver-Bucy Syndrome),又称为双侧颞叶切除综合征,指颞叶、杏仁体受损所导致的特殊行为,最典型的症状为把任何看得到的东西塞进嘴里,或是对任何生物做爱。这个
- 中大西洋地区中大西洋州份(英语:Mid-Atlantic), 通常是指美国境内的在新英格兰和美国南大西洋地区之间的地区。根据不同来源,有不同的定义,它一般包括纽约州、新泽西州、宾夕法尼亚州、特拉华
- 总统议长:南希·裴洛西(民主党) 多数党领袖(英语:Party leaders of the United States House of Representatives):斯坦利·霍耶(民主党) 少数党领袖(英语:Party leaders of the United Sta
- 皮质酮皮质酮(英语:Corticosterone,11β,21-二羟基孕烯-3,20-二酮)是一种糖皮质激素类二十一碳甾体激素,由肾上腺的皮质产生出来。类固醇生成(繁体)类固醇生成(简体)脱氧皮质酮醛固酮羊毛甾
- 喉片喉片(喉糖,喉咙含片,润喉糖,止咳片)是一种小型,通常含有药性的片剂,使用在在口中使它缓慢溶解,暂时缓解因来自普通感冒或流感所产生的咳嗽,并且润滑和舒缓喉咙受刺激的组织(通常使用
- 普鲁塔克普鲁塔克(希腊文:Πλούταρχος;拉丁文:Plutarchus)(约46年─125年),生活于罗马时代的希腊作家,以《比较列传》(οἱ βίοι παράλληλοι;常称为《希腊罗马名人传》
- 利百加根据《圣经·创世纪》记载,利百加(希伯来语:רִבְקָה,Rivqa)是以撒(Issac)的妻子,非孪生兄弟以扫和雅各的母亲。她是亚伯拉罕兄弟拿鹤的孙女,彼土利的女儿,亚伯拉罕是以撒的父亲
- 异体字字典《异体字表》(variant character table)是中华民国教育部编制之异体字字表,位列《常用国字标准字体表》、《次常用国字标准字体表》和《罕用字体表》之后,简称“丁表”。最新
