Delta位势阱

✍ dations ◷ 2025-08-19 11:14:12 #量子力学模型

在量子力学里,Delta位势阱是一个阱内位势为负狄拉克Delta函数,阱外位势为0的位势阱。Delta位势阱问题专门研讨,在这种位势的作用中,一个粒子的量子行为。这是一个常见的理论问题。假若,粒子的能量是正值的,我们想要知道的是,在被Delta位势垒散射的状况下,粒子的反射系数与透射系数。假若,粒子的能量是负值的,这粒子会被束缚于Delta位势阱的阱内。这时,我们想要知道的是粒子的能量与束缚的量子态。

一个粒子独立于时间的薛定谔方程为

其中, {\displaystyle \hbar \,\!} 是约化普朗克常数, m {\displaystyle m\,\!} 是粒子质量, x {\displaystyle x\,\!} 是粒子位置, E {\displaystyle E\,\!} 是能量, ψ ( x ) {\displaystyle \psi (x)\,\!} 是波函数, V ( x ) {\displaystyle V(x)\,\!} 是位势,表达为

其中, δ ( x ) {\displaystyle \delta (x)\,\!} 是狄拉克Delta函数, λ {\displaystyle \lambda \,\!} 是狄拉克Delta函数的强度。

这位势阱将一维空间分为两个区域: x < 0 {\displaystyle x<0\,\!} x > 0 {\displaystyle x>0\,\!} 。在任何一个区域内,位势为常数,薛定谔方程的解答可以写为往右与往左传播的波函数的的叠加(参阅自由粒子):

其中, A r {\displaystyle A_{r}\,\!} A l {\displaystyle A_{l}\,\!} B r {\displaystyle B_{r}\,\!} B l {\displaystyle B_{l}\,\!} 都是必须由边界条件决定的常数,下标 r {\displaystyle r\,\!} l {\displaystyle l\,\!} 分别标记波函数往右或往左的方向。 k = 2 m E / 2 {\displaystyle k={\sqrt {2mE/\hbar ^{2}}}\,\!} 是波数。

E > 0 {\displaystyle E>0\,\!} 时, ψ L {\displaystyle \psi _{L}\,\!} ψ R {\displaystyle \psi _{R}\,\!} 都是行进波。可是,当 E < 0 {\displaystyle E<0\,\!} 时, ψ L {\displaystyle \psi _{L}\,\!} ψ R {\displaystyle \psi _{R}\,\!} 都随着坐标 x {\displaystyle x\,\!} 呈指数递减或指数递增。

x = 0 {\displaystyle x=0\,\!} 处,边界条件是:

特别注意第二个边界条件方程,波函数随位置的导数在 x = 0 {\displaystyle x=0\,\!} 并不是连续的,在位势阱两边的差额有 2 λ 2 ψ R {\displaystyle {\frac {2\lambda }{\hbar ^{2}}}\psi _{R}\,\!} 这么多。这方程的推导必须用到薛定谔方程。将薛定谔方程积分于 x = 0 {\displaystyle x=0\,\!} 的一个非常小的邻域:

其中, ϵ {\displaystyle \epsilon \,\!} 是一个非常小的数值。

方程(1)右边的能量项目是

ϵ 0 {\displaystyle \epsilon \to 0\,\!} 时,该项趋向于0。

方程(1)左边是

根据狄拉克Delta函数的定义,

而在 ϵ 0 {\displaystyle \epsilon \to 0\,\!} 的极限,

将这些结果(4),(5),(6)代入方程(3),整理后,可以得到第二个边界条件方程:在 x = 0 {\displaystyle x=0\,\!}

从这两个边界条件方程。稍加运算,可以得到以下方程:

假若,能量是正值的,粒子可以自由的移动于位势阱外的两个半空间, x < 0 {\displaystyle x<0\,\!} x > 0 {\displaystyle x>0\,\!} 。在这里,粒子的量子行为主要是由Delta位势阱造成的散射行为。称这粒子的量子态为散射态。设定粒子从左边入射。在Delta位势阱,粒子可能会被反射回去,或者会被透射过去。我们想要知道散射的反射系数与透射系数。设定 A r = 1 {\displaystyle A_{r}=1\,\!} A l = r {\displaystyle A_{l}=r\,\!} B l = 0 {\displaystyle B_{l}=0\,\!} B r = t {\displaystyle B_{r}=t\,\!} 。求算反射的概率幅 r {\displaystyle r\,\!} 与透射的概率幅 t {\displaystyle t\,\!}

反射系数是

这纯粹是一个量子力学的效应;在经典力学里,这是不可能发生的。

透射系数是

每一个一维的吸引位势,都至少会存在着一个束缚态(bound state)。由于 E < 0 {\displaystyle E<0\,\!} ,波数变为复数。设定 κ = i k = 2 m | E | / 2 {\displaystyle \kappa =-ik={\sqrt {2m|E|/\hbar ^{2}}}\,\!} 。前述的振荡的波函数 ψ L {\displaystyle \psi _{L}\,\!} ψ R {\displaystyle \psi _{R}\,\!} ,现在却随着坐标 x {\displaystyle x\,\!} 呈指数递减或指数递增。为了要符合物理的真实性,我们要求波函数不发散于 x ± {\displaystyle x\to \pm \infty \,\!} 。那么, A r {\displaystyle A_{r}\,\!} B l {\displaystyle B_{l}\,\!} 必须被设定为0。波函数变为

从边界条件与归一条件,可以得到

Delta位势阱只能有一个束缚态。束缚态的能量是

束缚态的波函数是

Delta位势阱是有限深方形阱的一个特别案例。在有限深位势阱的深度 V 0 {\displaystyle V_{0}\to \infty \,\!} 与阱宽 L 0 {\displaystyle L\to 0\,\!} 的极限,同时保持 V 0 L = λ {\displaystyle V_{0}L=\lambda \,\!} ,就可以从有限深位势阱的波函数,得到Delta位势阱的波函数。

Delta函数模型其实是氢原子的一维版本根据维度比例由 达德利·赫施巴赫(“Dudley R. Herschbach”)团队所研发。此 delta函数模型以双井迪拉克Delta函数模型最有用,因其代表一维版的水分子离子。

双井迪拉克Delta函数模型是用以下薛定谔方程描述:

电势现为:

其中 0 < R < {\displaystyle 0<R<\infty } 是“核间”距离于迪拉克Delta函数(负)峰值位于 x = ± R 2 {\displaystyle x=\pm {\textstyle {\frac {R}{2}}}} (图表中棕色所示)。记得此模型与其三维分子版本的关系,我们用原子单位制且设 = m = 1 {\displaystyle \hbar =m=1} 。此处 0 < λ < 1 {\displaystyle 0<\lambda <1} 为一可调参数。从单井的例子,可推论拟设于此解为:

令波函数于Delta函数峰值相等可得行列式:

因此, d {\displaystyle d} 是由伪二次式方程:

它有两解 d = d ± {\displaystyle d=d_{\pm }} 。若等价情况(对称单核), λ = 1 {\displaystyle \lambda =1} 则伪二次式化为:

此“+”代表了对称于中点的波函数(图中红色)而 A = B {\displaystyle A=B} 称为偶态。接着,“-”情况为反对称于中点的波函数其 A = B {\displaystyle A=-B} 称为非偶态(图中绿色)。它们代表着三维 H 2 + {\displaystyle H_{2}^{+}} 的两种最低能态之近似且有助于其分析。对称电价的特征能分析解为:

其中W是标准朗伯W函数注意此最低能对应于对称解 d + {\displaystyle d_{+}} 。当非等电价,此为三维分子问题,其解为一般化Lambert W函数(见一般化朗伯W函数章节与相关参考)。

相关

  • 国务院安全生产委员会1999年规定:印章直径5厘米,中央刊五角星,由国务院制发。国务院安全生产委员会,是中华人民共和国国务院成立的国务院议事协调机构,负责安全生产工作。1984年11月26日,国务院批准了
  • 高加索语系高加索语言泛指来源于高加索地区的语言,共同结合为高加索语系,其归属及分类均存争议。一般来说,高加索语言分为2或3种语系或语族,包括西北高加索语系、东北高加索语系和南高加索
  • 青铜器青铜器是由青铜(多为铜和锡、铅的合金,其中锡和铅的成分都必须大于2%。另有十多种配方)制成的各种器具,诞生于人类文明的青铜时代。由于青铜器在世界各地均有出现,所以也是一种世
  • 德国饮食文化德国饮食文化是指德国国内和日耳曼人的饮食习惯。德国由于身处欧洲大陆之中心,饮食文化与内陆地区之物产分布息息相关。整体上德国人较为爱好肉类。其中德国人非常爱吃猪肉,大
  • 甜味甜味是一种基本的味觉。在全球众多文化中,甜味都象征着美好的感觉;此外,所有的人类文化都偏好甜味的食物,对甜食的偏好,是普世人性。许多化合物是甜的,在生化物质中简单的碳水化合
  • 坦普尔坦普尔(Temple)是位于美国德克萨斯州贝尔县的一个城市,靠近县治贝尔顿 。它最早是一个铁路镇,成立于1881年,2010年美国人口普查时有66,102人。‡该聚居地有部分位在邻近一个或以
  • 彼得·梅达沃彼得·布赖恩·梅达沃爵士,OM,CBE,FRS(英语:Sir Peter Brian Medawar,1915年2月28日-1987年10月2日),出生于巴西里约热内卢的英国科学家,主要研究免疫学。他与弗兰克·麦克法兰·伯内
  • 法国君主列表法国君主列表从第一位法兰克人之王法拉蒙德开始列起。法兰西君主(法语:monarque de France)自中世纪开始统治法兰西,其正式头衔起先是“王”(法语:Roi),拿破仑一世增加了“皇帝”(法
  • 1AD1AD可以指:
  • 克劳斯·巴比克劳斯·巴比(德语:Nikolaus "Klaus" Barbie 1913年10月25日-1991年9月25日)纳粹德国党卫队、盖世太保职员,因在法国里昂亲自参与虐杀法国俘虏,号称“里昂屠夫”,受虐者中包括法国