Delta位势阱

✍ dations ◷ 2025-04-03 12:37:17 #量子力学模型

在量子力学里,Delta位势阱是一个阱内位势为负狄拉克Delta函数,阱外位势为0的位势阱。Delta位势阱问题专门研讨,在这种位势的作用中,一个粒子的量子行为。这是一个常见的理论问题。假若,粒子的能量是正值的,我们想要知道的是,在被Delta位势垒散射的状况下,粒子的反射系数与透射系数。假若,粒子的能量是负值的,这粒子会被束缚于Delta位势阱的阱内。这时,我们想要知道的是粒子的能量与束缚的量子态。

一个粒子独立于时间的薛定谔方程为

其中, {\displaystyle \hbar \,\!} 是约化普朗克常数, m {\displaystyle m\,\!} 是粒子质量, x {\displaystyle x\,\!} 是粒子位置, E {\displaystyle E\,\!} 是能量, ψ ( x ) {\displaystyle \psi (x)\,\!} 是波函数, V ( x ) {\displaystyle V(x)\,\!} 是位势,表达为

其中, δ ( x ) {\displaystyle \delta (x)\,\!} 是狄拉克Delta函数, λ {\displaystyle \lambda \,\!} 是狄拉克Delta函数的强度。

这位势阱将一维空间分为两个区域: x < 0 {\displaystyle x<0\,\!} x > 0 {\displaystyle x>0\,\!} 。在任何一个区域内,位势为常数,薛定谔方程的解答可以写为往右与往左传播的波函数的的叠加(参阅自由粒子):

其中, A r {\displaystyle A_{r}\,\!} A l {\displaystyle A_{l}\,\!} B r {\displaystyle B_{r}\,\!} B l {\displaystyle B_{l}\,\!} 都是必须由边界条件决定的常数,下标 r {\displaystyle r\,\!} l {\displaystyle l\,\!} 分别标记波函数往右或往左的方向。 k = 2 m E / 2 {\displaystyle k={\sqrt {2mE/\hbar ^{2}}}\,\!} 是波数。

E > 0 {\displaystyle E>0\,\!} 时, ψ L {\displaystyle \psi _{L}\,\!} ψ R {\displaystyle \psi _{R}\,\!} 都是行进波。可是,当 E < 0 {\displaystyle E<0\,\!} 时, ψ L {\displaystyle \psi _{L}\,\!} ψ R {\displaystyle \psi _{R}\,\!} 都随着坐标 x {\displaystyle x\,\!} 呈指数递减或指数递增。

x = 0 {\displaystyle x=0\,\!} 处,边界条件是:

特别注意第二个边界条件方程,波函数随位置的导数在 x = 0 {\displaystyle x=0\,\!} 并不是连续的,在位势阱两边的差额有 2 λ 2 ψ R {\displaystyle {\frac {2\lambda }{\hbar ^{2}}}\psi _{R}\,\!} 这么多。这方程的推导必须用到薛定谔方程。将薛定谔方程积分于 x = 0 {\displaystyle x=0\,\!} 的一个非常小的邻域:

其中, ϵ {\displaystyle \epsilon \,\!} 是一个非常小的数值。

方程(1)右边的能量项目是

ϵ 0 {\displaystyle \epsilon \to 0\,\!} 时,该项趋向于0。

方程(1)左边是

根据狄拉克Delta函数的定义,

而在 ϵ 0 {\displaystyle \epsilon \to 0\,\!} 的极限,

将这些结果(4),(5),(6)代入方程(3),整理后,可以得到第二个边界条件方程:在 x = 0 {\displaystyle x=0\,\!}

从这两个边界条件方程。稍加运算,可以得到以下方程:

假若,能量是正值的,粒子可以自由的移动于位势阱外的两个半空间, x < 0 {\displaystyle x<0\,\!} x > 0 {\displaystyle x>0\,\!} 。在这里,粒子的量子行为主要是由Delta位势阱造成的散射行为。称这粒子的量子态为散射态。设定粒子从左边入射。在Delta位势阱,粒子可能会被反射回去,或者会被透射过去。我们想要知道散射的反射系数与透射系数。设定 A r = 1 {\displaystyle A_{r}=1\,\!} A l = r {\displaystyle A_{l}=r\,\!} B l = 0 {\displaystyle B_{l}=0\,\!} B r = t {\displaystyle B_{r}=t\,\!} 。求算反射的概率幅 r {\displaystyle r\,\!} 与透射的概率幅 t {\displaystyle t\,\!}

反射系数是

这纯粹是一个量子力学的效应;在经典力学里,这是不可能发生的。

透射系数是

每一个一维的吸引位势,都至少会存在着一个束缚态(bound state)。由于 E < 0 {\displaystyle E<0\,\!} ,波数变为复数。设定 κ = i k = 2 m | E | / 2 {\displaystyle \kappa =-ik={\sqrt {2m|E|/\hbar ^{2}}}\,\!} 。前述的振荡的波函数 ψ L {\displaystyle \psi _{L}\,\!} ψ R {\displaystyle \psi _{R}\,\!} ,现在却随着坐标 x {\displaystyle x\,\!} 呈指数递减或指数递增。为了要符合物理的真实性,我们要求波函数不发散于 x ± {\displaystyle x\to \pm \infty \,\!} 。那么, A r {\displaystyle A_{r}\,\!} B l {\displaystyle B_{l}\,\!} 必须被设定为0。波函数变为

从边界条件与归一条件,可以得到

Delta位势阱只能有一个束缚态。束缚态的能量是

束缚态的波函数是

Delta位势阱是有限深方形阱的一个特别案例。在有限深位势阱的深度 V 0 {\displaystyle V_{0}\to \infty \,\!} 与阱宽 L 0 {\displaystyle L\to 0\,\!} 的极限,同时保持 V 0 L = λ {\displaystyle V_{0}L=\lambda \,\!} ,就可以从有限深位势阱的波函数,得到Delta位势阱的波函数。

Delta函数模型其实是氢原子的一维版本根据维度比例由 达德利·赫施巴赫(“Dudley R. Herschbach”)团队所研发。此 delta函数模型以双井迪拉克Delta函数模型最有用,因其代表一维版的水分子离子。

双井迪拉克Delta函数模型是用以下薛定谔方程描述:

电势现为:

其中 0 < R < {\displaystyle 0<R<\infty } 是“核间”距离于迪拉克Delta函数(负)峰值位于 x = ± R 2 {\displaystyle x=\pm {\textstyle {\frac {R}{2}}}} (图表中棕色所示)。记得此模型与其三维分子版本的关系,我们用原子单位制且设 = m = 1 {\displaystyle \hbar =m=1} 。此处 0 < λ < 1 {\displaystyle 0<\lambda <1} 为一可调参数。从单井的例子,可推论拟设于此解为:

令波函数于Delta函数峰值相等可得行列式:

因此, d {\displaystyle d} 是由伪二次式方程:

它有两解 d = d ± {\displaystyle d=d_{\pm }} 。若等价情况(对称单核), λ = 1 {\displaystyle \lambda =1} 则伪二次式化为:

此“+”代表了对称于中点的波函数(图中红色)而 A = B {\displaystyle A=B} 称为偶态。接着,“-”情况为反对称于中点的波函数其 A = B {\displaystyle A=-B} 称为非偶态(图中绿色)。它们代表着三维 H 2 + {\displaystyle H_{2}^{+}} 的两种最低能态之近似且有助于其分析。对称电价的特征能分析解为:

其中W是标准朗伯W函数注意此最低能对应于对称解 d + {\displaystyle d_{+}} 。当非等电价,此为三维分子问题,其解为一般化Lambert W函数(见一般化朗伯W函数章节与相关参考)。

相关

  • 寓言寓言或寓言故事通常是一篇含有道德教育或者警世智慧的短篇故事,为文学体裁的一种,通常以简洁有趣的故事呈现,常隐含作者对人生的观察和体验,并无字数限制,是一种很古老的文学体裁
  • 昆提良马库斯·法比尤斯·昆提利安(Marcus Fabius Quintilianus,约公元35-100年)是一位罗马帝国西班牙行省的雄辩家、修辞家、教育家、拉丁语教师、作家。69至88年教授修辞学,成为罗
  • 康斯坦丁三世科林之子康斯坦丁(中世纪盖尔语:Causantín mac Cuiléin;现代盖尔语:Còiseam mac Chailein;971年前–997年),有时被现代王表称为康斯坦丁四世或康斯坦丁三世,是995年-997年在位的
  • 六龟六龟区(台湾客家语:Liu̍k-kûi khî;大武垅语:Lakuri, Lakoli),位于中华民国高雄市东北半叶南部,东邻桃源区、茂林区,西邻甲仙区、杉林区、美浓区,南接台湾省屏东县高树乡、三地门乡
  • 球子蕨球子蕨(学名:Onoclea sensibilis)为球子蕨科球子蕨属下的一个种。
  • central nervous system中枢神经系统(英文:central nervous system,缩写:CNS)是神经系统中神经细胞集中的结构,在脊椎动物包括脑和脊髓;在高等无脊椎动物如环节动物和昆虫等,则主要包括腹神经索和一系列的
  • 小艾伯特实验小艾伯特实验是一个显示婴儿经典条件反射的实验。这项研究也是一个刺激泛化的例子。它是在1920年由约翰·布罗德斯·华生和他的助手罗莎莉·雷纳在约翰霍普金斯大学进行的。
  • 龟峰坐标:28°19′00″N 117°24′00″E / 28.31667°N 117.40000°E / 28.31667; 117.40000龟峰又名圭峰,位于江西省上饶市弋阳县圭峰镇。因山石相叠如龟,故名。共有36峰,八大景观
  • 保罗·柯艾略保罗·柯艾略(葡萄牙语:Paulo Coelho de Souza,发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Co
  • 塞莱斯蒂娜《塞莱斯蒂娜》(西班牙语:La Celestina),原题《卡利斯托和梅利贝娅的悲喜剧》(西班牙语:Tragicomedia de Calisto y Melibea)是西班牙中世纪时期的一篇对话体长篇小说,讲述一个以悲