X射线

✍ dations ◷ 2024-07-03 00:54:46 #X射线
X射线(英语:X-ray),又被称为爱克斯射线、艾克斯射线、伦琴射线或X光,是一种波长范围在0.01纳米到10纳米之间(对应频率范围30 PHz到30EHz)的电磁辐射形式。X射线最初用于医学成像诊断和X射线结晶学。X射线也是游离辐射等这一类对人体有危害的射线。X射线波长范围在较短处与伽马射线较长处重叠。早期X射线重要的研究者有Ivan Pului教授、威廉·克鲁克斯爵士、约翰·威廉·希托夫、欧根·戈尔德斯坦、海因里希·鲁道夫·赫兹、菲利普·莱纳德、亥姆霍兹、尼古拉·特斯拉、爱迪生、查尔斯·巴克拉、马克思·冯·劳厄和威廉·伦琴。1869年物理学家约翰·威廉·希托夫观察到真空管中的阴极发出的射线。当这些射线遇到玻璃管壁会产生荧光。1876年这种射线被欧根·戈尔德斯坦命名为“阴极射线”。随后,英国物理学家克鲁克斯研究稀有气体里的能量释放,并且制造了克鲁克斯管。这是一种玻璃真空管,内有可以产生高电压的电极。他还发现,当将未曝光的相片底片靠近这种管时,一些部分被感光了,但是他没有继续研究这一现象。1887年4月,尼古拉·特斯拉开始使用自己设计的高电压真空管与克鲁克斯管研究X射线。他发明了单电极X射线管,在其中电子穿过物质,发生了现在叫做轫致辐射的效应,生成高能X射线射线。1892年特斯拉完成了这些实验,但是他并没有使用X射线这个名字,而只是笼统地称为放射能。他继续进行实验,并提醒科学界注意阴极射线对生物体的危害性,但他没有公开自己的实验成果。1892年赫兹进行实验,提出阴极射线可以穿透非常薄的金属箔。赫兹的学生伦纳德进一步研究这一效应,对很多金属进行了实验。亥姆霍兹则对光的电磁本性进行了数学推导。1895年11月8日德国科学家伦琴开始进行阴极射线的研究。1895年12月28日他完成了初步的实验报告“一种新的射线”。他把这项成果发布在维尔茨堡的Physical-Medical Society杂志上。为了表明这是一种新的射线,伦琴采用表示未知数的X来命名。很多科学家主张命名为伦琴射线,伦琴自己坚决反对,但是这一名称直至今日仍然被广泛使用,尤其在德语国家。1901年伦琴获得诺贝尔物理学奖。1895年爱迪生研究了材料在X射线照射下发出荧光的能力,发现钨酸钙最为明显。1896年3月爱迪生发明了荧光观察管,后来被用于医用X射线的检验。然而1903年爱迪生终止了自己对X射线的研究,因为他公司的一名玻璃工人喜欢将X射线管放在手上检验,最后得了癌症,尽管进行了截肢手术仍然没能挽回生命。巴克拉发现X射线能够被气体散射,并且每一种元素有其特征X谱线。他因此获得了1917年诺贝尔物理学奖。在20世纪80年代,X射线激光器被设置为罗纳德·里根总统的战略主动防御计划的一部分。然而对该装置(一种类似激光炮,或者死亡射线的装置,由热核反应提供能量)最初的、同时也是仅有的试验并没有给出结论性的结果。同时,由于政治和技术的原因,整体的计划(包括X射线激光器)被搁置了(然而该计划后来又被重新启动——使用了不同的技术,并作为布什总统国家导弹防御计划的一部分)。在20世纪90年代,哈佛大学建立了钱德拉X射线天文台,用来观测宇宙中强烈的天文现象中产生的X射线。与从可见光观测到的相对稳定的宇宙不同,从X射线观测到的宇宙是不稳定的。它向人们展示了恒星如何被黑洞绞碎,星系间的碰撞,超新星和中子星。X射线波长略大于0.5 nm的被称作软X射线。波长短于0.1 nm的叫做硬X射线。硬X射线与波长长的(能量小)伽马射线范围重叠,二者的区别在于辐射源,而不是波长:X射线光子产生于高能电子加速,伽马射线则来源于原子核衰变。产生X射线的最简单方法是用加速后的电子撞击金属靶。撞击过程中,电子突然减速,其损失的动能会以光子形式放出,形成X射线光谱的连续部分,称之为制动辐射。通过加大加速电压,电子携带的能量增大,则有可能将金属原子的内层电子撞出。于是内层形成空穴,外层电子跃迁回内层填补空穴,同时放出波长在0.1纳米左右的光子。由于外层电子跃迁放出的能量是量子化的,所以放出的光子的波长也集中在某些部分,形成了X射线谱中的特征线,此称为特性辐射。此外,高强度的X射线亦可由同步加速器或自由电子激光产生。同步辐射光源,具有高强度、连续波长、光束准直、极小的光束截面积并具有时间脉波性与偏振性,因而成为科学研究最佳之X射线光源。X射线的探测可基于多种方法。最普通的一种方法叫做照相底板法,这种方法在医院里经常使用。将一片照相底片放置于人体后方,X射线穿过人体内软组织(皮肤及器官)后会照射到底片,令这些部位于底片经显影后保留黑色;X射线无法穿过人体内的硬组织,如骨或其他被注射含钡或碘的物质,底片于显影后会显示成白色。光激影像板(image plate)因容易数字化,在少部分医院已取代传统底片。另一方法是利用X射线照射在特定材质上以产生荧光,例如碘化钠(NaI)。科学研究上,除了使用X射线CCD,也利用X射线游离气体的特性,使用气体游离腔做为X射线强度之侦测。这些方法只能显示出X射线的光子密度,但无法显示出X射线的光子能量。X射线光子的能量通常以晶体使X射线衍射再依布拉格定律计算出。在晶体学研究上,劳厄发现了X射线通过晶体之后产生的衍射现象,即X射线衍射。布拉格则使用布拉格定律对衍射关系进行了定量的描述。伦琴发现X射线后仅仅几个月时间内,它就被应用于医学影像。1896年2月,苏格兰医生约翰·麦金泰尔(英语:John Macintyre)在格拉斯哥皇家医院(英语:Glasgow Royal Infirmary)设立了世界上第一个放射科。放射医学是医学的一个专门领域,它使用放射线照相术和其他技术产生诊断图像。的确,这可能是X射线技术应用最广泛的地方。X射线的用途主要是探测骨骼的病变,但对于探测软组织的病变也相当有用。常见的例子有胸腔X射线,用来诊断肺部疾病,如肺炎、肺癌或肺气肿;而腹腔X射线则用来检测肠道梗塞,自由气体(free air,由于内脏穿孔)及自由液体(free fluid)。某些情况下,使用X射线诊断还存在争议,例如结石(对X射线几乎没有阻挡效应)或肾结石(一般可见,但并不总是可见)。借助计算机,人们可以把不同角度的X射线影像合成成三维图像,在医学上常用的电脑断层扫描(CT扫描)就是基于这一原理。X射线穿透能力与其频率有关,利用其容易被高原子序数材料吸收的特点,防护上一般可用2-3mm左右的铅板加以屏蔽。美国艾伯特.C.盖瑟(英语:Albert C. Geyser)曾利用X射线制造出美容除毛机并建立崔可公司,但因为辐射使他罹患癌症,最后为避免癌症扩散,他切除了右手,而X射线的美容除毛机也导致数百万名妇女出现皱纹、色斑、感染、溃疡,甚至皮肤癌等症状。← 波长越短       波长越长 →← 频率越高       频率越低 →

相关

  • 10的百科知识|10的意思解释|10是什么意思国际疾病伤害及死因分类标准第十版(英语:The International Statistical Classification of Diseases and Related Health Problems 10th Revision,ICD-10)是世界卫生组织依据疾
  • 心搏过速心跳过速(tachycardia、tachyarrhythmia),也称心动过速、心跳过快。是指心跳速度超出了正常范围,达到每分钟一百次以上的现象。剧烈的体育运动、紧张、焦虑或服用某些药物等可能
  • American Thoracic Society美国胸腔学会(The American Thoracic Society,缩写: ATS),成立于1905年,是美国一个独立注册的、国际性、 以呼吸医学和重症监护医学医学为主的教育与科学组织。大约有18000学会成
  • 共生共生一词在英文或是希腊文,字面意义就是“共同”和“生活”,这是两生物体之间生活在一起的交互作用,甚至包含不相似的生物体之间的吞噬行为。术语“宿主”通常被用来指共生关系
  • 弧菌螺旋菌(英语:Spiral bacteria)系按形态分出的一种细菌种类。其种类次于球菌、杆菌,在细菌家族中位列第三。。螺旋超过一周的螺旋菌被称为螺旋菌,而不满一周的则被称为弧菌。另外,
  • 生物分类学生物分类学(英语:biotaxonomy)通常直接称分类学(英语:taxonomy;法语:taxonomie;西班牙语:taxonomía),是一门研究生物类群间的异同程度,阐明生物间的亲缘关系、进化过程和发展规律的科学
  • 瘟疫瘟疫,指大型且具有传染力又会造成死亡的流行病,在广大区域或全球多处传染人或其他物种。现代医学卫生发达,许多会造成大量死亡的瘟疫都有效控制为流行病等级。根据世界卫生组织
  • 担子菌担子菌门(学名:Basidiomycota)是一类高等真菌,构成双核亚界,包含2万多种,包括蘑菇、木耳等主要食用菌。更具体地说,担子菌门包括以下组:蘑菇,马勃,stinkhorns(鬼笔科),支架真菌(英语:Bracke
  • 短尾噬菌体科T7噬菌体属 φ29噬菌体属 P22噬菌体属 N4噬菌体属短尾噬菌体科(Podoviridae),又译作短尾病毒科,一般宿主为细菌,Podo来自从希腊文的pous,有脚、足、短的尾巴之意。
  • 风险评估风险评估(英文:Risk Assessment),是风险管理的一个重要过程。风险管理国际标准ISO 31000(英语:ISO 31000)定义风险评估的过程为:风险评估是风险识别、风险分析及风险评价的全过程。