首页 >
球状
✍ dations ◷ 2024-12-22 17:27:11 #球状
在数学里,球是指球面内部的空间。球可以是封闭的(包含球面的边界点,称为闭球),也可以是开放的(不包含边界点,称为开球)。球的概念不只存在于三维欧氏空间里,亦存在于较低或较高维度,以及一般度量空间里。
n
{displaystyle n,!}
维空间里的球称为
n
{displaystyle n,!}
维球,且包含于
n
−
1
{displaystyle n-1,!}
维球面内。因此,在欧氏平面里,球为一圆盘,包含在圆内。在三维空间里,球则是指在二维球面边界内的空间。在
n
{displaystyle n,!}
维欧氏空间里,一个中心为
x
{displaystyle x,!}
,半径为
r
{displaystyle r,!}
的
n
{displaystyle n,!}
维(开)球是个由所有距
x
{displaystyle x,!}
的距离小于
r
{displaystyle r,!}
的点所组成之集合。一个中心为
x
{displaystyle x,!}
,半径为
r
{displaystyle r,!}
的
n
{displaystyle n,!}
维闭球是个由所有距
x
{displaystyle x,!}
的距离小于等于
r
{displaystyle r,!}
的点所组成之集合。在
n
{displaystyle n,!}
维欧氏空间里,每个球都是某个超球面内部的空间。在一维时,球是个有界的区间;在二维时,是某个圆的内部(圆盘);而在三维时,则是某个球面的内部。在
n
{displaystyle n,!}
维欧氏空间里,半径
R
{displaystyle R,!}
的球之
n
{displaystyle n,!}
维体积为:其中,Γ是李昂哈德·欧拉的Γ函数(可被视为阶乘在实数的延伸)。使用Γ函数在整数与半整数时的公式,可不需要估算Γ函数即可计算出球的体积:在奇数维度时的体积公式里,对每个奇数
2
k
+
1
{displaystyle 2k+1,!}
,双阶乘 (2k + 1)!! 定义为 (2k + 1)!! = 1 · 3 · 5 ··· (2k − 1) · (2k + 1)。令 (M,d) 为一度量空间,即具有度量(距离函数)d 的集合 M。中心为 M 内的点 p,半径为 r > 0 的开球,通常标计为 Br(p) 或 B(p; r),定义为其闭球,可标计为 Bt 或 B,则定义为请特别注意,一个球(无论开放或封闭)总会包含点 p,因为依定义, r > 0。开球的闭包通常标记为
B
r
(
p
)
¯
{displaystyle {overline {B_{r}(p)}}}
。虽然
B
r
(
p
)
⊆
B
r
(
p
)
¯
{displaystyle B_{r}(p)subseteq {overline {B_{r}(p)}}}
与
B
r
(
p
)
¯
⊆
B
r
[
p
]
{displaystyle {overline {B_{r}(p)}}subseteq B_{r}}
总是成立的,但
B
r
(
p
)
¯
=
B
r
[
p
]
{displaystyle {overline {B_{r}(p)}}=B_{r}}
则不一定总是为真。举例来说,在一个具离散度量的度量空间 X 里,对每个 X 内的 p 而言,
B
1
(
p
)
¯
=
{
p
}
{displaystyle {overline {B_{1}(p)}}={p}}
,但
B
1
[
p
]
=
X
{displaystyle B_{1}=X}
。一个(开或闭)单位球为一半径为 1 的球。度量空间的子集是有界的,若该子集包含于某个球内。一个集合是全有界的,若给定一正值半径,该集合可被有限多个具该半径的球所覆盖。度量空间里的开球为拓扑空间里的基,其中所有的开集合均为某些(有限或无限个)开球的联集。该拓扑空间被称为由度量 d 导出之拓扑。每个具范数 |·| 的赋范向量空间亦为一度量空间,其中度量 d(x, y) = |x − y|。在此类空间里,每个球 Br(p) 均可视为是单位球 B1(0) 平移 p,再缩放 r 后所得之集合。前面讨论的欧氏空间里的球亦为赋范向量空间里球的一例。在具 p-范数 Lp 的笛卡尔空间
R
n
{displaystyle mathbb {R} ^{n}}
里,开球是指集合在二维(n=2)时,L1(通常称为曼哈顿度量)的球是对角线平行于坐标轴的正方形;而 L∞(切比雪夫度量)的球则是个边平行于坐标轴的正方形。对于 p 的其他值,该球则会是超椭圆的内部。在三维(n=3)时,L1 的球是个对角线平行为坐标轴的八面体,而 L∞ 的球则是个边平行为坐标轴的正立方体。对于 p 的其他值,该球则会是超椭球的内部。更一般性地,给定任一 Rn 内中心对称、有界、开放且凸的集合 X,均可定义一个在 Rn 的范数,该球均为 X 平移再一致缩放后所得之集合。须注意,若将此定理内的“开”子集以“闭”子集替代,则定理不能成立,因为原点也符合定理内所定之集合,但无法定义 Rn 内的范数。在拓扑学的文献里,“球”可能有两种含义,由上下文决定。“(开)球”一词有时被非正式地用于指代任何开集:可以用“p 点周围的一个球”代表包含p 的一个开集。该集合同胚于什么依赖于背景拓扑空间以及所选取的开集。同样,“闭球”有时用于表示这样一个开集的闭包。(这可能产生误导,例如超度量空间中一个闭球不是同样半径的开球的闭包,它们都是既开且闭的。)有时,邻域用于指代这个意义上的球,但是邻域其实有更一般的意义:p 的一个邻域是任何包含一个p 的开集的集合,因此通常不是开集。X 内的 n 维(开或闭)拓扑球是指 X 内同胚于 n 维(开或闭)欧几里得球的任一子集,该子集不一定需要由某个度量导出。n 维拓扑球在组合拓扑学里很重要,为建构胞腔复形的基础。任一 n 维开拓扑球均同胚于笛卡尔空间 Rn 及 n 维开单位超方形
(
0
,
1
)
n
⊆
R
n
{displaystyle (0,1)^{n}subseteq mathbb {R} ^{n}}
。任一 n 维闭拓扑球均同胚于 n 维闭超方形 n。n 维球同胚于 m 维球,当且仅当 n = m。n 维开球 B 与 Rn 间的同胚可分成两种类型,以 B 的两种可能之拓扑定向来区分。一个 n 维拓扑球不一定是光滑的;若该球是光滑的,亦不一定需微分同胚于一 n 维欧几里得球。
相关
- 克雷伯氏肺炎菌克雷伯氏肺炎菌(学名:Klebsiella pneumoniae)是肠杆菌科克雷伯氏菌属的一种,属于革兰氏阴性菌,杆状,有大量黏性的多糖形成的荚膜包覆。克雷伯氏肺炎菌可以在人类,特别是免疫力低弱
- 副黏液病毒副粘液病毒科包括二个亚科,副粘液病毒亚科(Paramyxivirinae)及肺炎病毒亚科(Pneumovirinae)。副粘液病毒亚科除已归类六属病毒外,还有尚未归类之马麻疹病毒属(Equine Morbilli
- 肺囊虫肺炎肺囊虫肺炎(Pneumocystis pneumonia)是一种单细胞真菌(yeast,在此指的是单细胞霉菌,而非酵母菌)引起的肺炎,病原体是卡氏肺囊虫(Pneumocystis jiroveci,旧名Pneumocystis carinii)
- 间质性肺病间质性肺病(Interstitial Lung Disease(ILD),又称为弥漫性肺病 Diffuse Parenchymal Lung Disease(DPLD))是一群主要侵犯肺泡上皮细胞,肺微血管内皮细胞、基底膜以及肺内血管及淋巴
- 喘鸣喘鸣(英语:Wheeze, Sibilant Rhonchi),又称啰音,是指呼吸过程中呼吸道持续产生的粗糙声音。哮鸣发生的原因是由于呼吸道的某些部分缩小或被堵塞,亦可能是呼吸道内的气流速度提高。
- 砂眼衣原体砂眼衣原体(Chlamydia trachomatis,披衣菌)是一种绝对寄生病原体,披衣菌是一种在构造上介于细菌和病毒之间的微生物。以往被认为是一种病毒,但因其同时含有 DNA 和 RNA、并有和革
- 羊水羊水是水状液体,包围衬垫著羊膜内的胚胎。羊水让胚胎能够自由活动,不会让子宫壁压的太紧。羊水也提供浮力。此外,由于水的比热容高,羊水能提供胎儿一个恒定温度的环境,羊水也在生
- 血氧饱和度血氧饱和度是指血中氧饱和血红蛋白相对于总血红蛋白(不饱和+饱和)的b比例。 人体需要并调节血液中氧气的非常精确和特定的平衡。 人体的正常动脉血氧饱和度为95-100%。 如果该
- 充血性心力衰竭心脏衰竭(法语:Insuffisance cardiaque,英语:HF, heart failure),一般意指慢性心脏衰竭(英语:CHF, chronic heart failure)。但是有时则指郁血性心力衰竭(congestive heart failure),当
- 皮肤皮肤,包住脊椎动物的软层,是组织之一,在人体是最大的器官。皮肤挡住外来侵入,亦保住水分。有保暖、阻隔、感觉之用。皮肤的作用因物种而异,有保暖、保护色、吸引异性等作用。各物