整除

✍ dations ◷ 2025-08-27 07:19:42 #整除
数学中,尤其是在基本计算里,除法可以看成是“乘法的反运算”,也可以理解为“重复的减法”。除法运算的本质就是“把参与运算的除数变为 1 {displaystyle 1} ,得出被除数的值”。例如: 6 ÷ 3 = 2 {displaystyle {{6}div {3}}=2} ,就好像 6 − 3 − 3 = 0 {displaystyle {{{6}-{3}}-{3}}=0} , { 6 − 3 = 3 3 − 3 = 0 {displaystyle {begin{cases}6-3=3\3-3=0end{cases}}} , 6 {displaystyle 6} 被 3 {displaystyle 3} 减了两次后,就变成了 0 {displaystyle 0} 。如果而且 b {displaystyle b} 不等于零,那么其中,a称为商数,b称为除数,c称为被除数。如果除式的商数( a {displaystyle a} )必须是整数,则称为带余除法, a × b {displaystyle atimes b} 与 c {displaystyle c} 相差的数值,称为余数( d {displaystyle d} )。这也意味着在高等数学(包括在科学与工程学中)和计算机编程语言中, c ÷ b {displaystyle cdiv b} 写成 c / b {displaystyle c/b} 。如果我们不需要知道确切值或者留待以后引用,这种形式也常常是称之为分数的最终形式。其中寻找商数的函数为 div {displaystyle operatorname {div} } ,寻找余数的函数则为 mod {displaystyle operatorname {mod} } 。在大部分的非英语语言中, c : b {displaystyle c:b} 代表 c ÷ b {displaystyle cdiv b} 的比,读做c比b; c / b {displaystyle c/b} 则代表 c ÷ b {displaystyle cdiv b} 的比值。用法请参照比例。整除是数学中两个自然数之间的一种关系。自然数 a {displaystyle a} 可以被自然数 b {displaystyle b} 整除,是指 b {displaystyle b} 是 a {displaystyle a} 的约数,且a是b的整数倍数,也就是 a {displaystyle a} 除以 b {displaystyle b} 没有余数。约数判别法可参照整除规则。b ∣ a {displaystyle bmid a} 表示 b {displaystyle b} 整除 a {displaystyle a} ,即 a {displaystyle a} 是 b {displaystyle b} 的倍数, b {displaystyle b} 是 a {displaystyle a} 的因数。15 {displaystyle 15} 可以被 5 {displaystyle 5} 整除,记作 5 ∣ 15 {displaystyle 5mid 15} 。20 {displaystyle 20} 不能被 6 {displaystyle 6} 整除(因为余数为 2 {displaystyle 2} ),记作 6 ∤ 20 {displaystyle 6nmid 20} 。在 ∣ {displaystyle mid } 上加一条斜线即表示不整除。根据乘法表,两个整数可以用长除法(直式除法)笔算。如果被除数有分数部分(或者说时小数点),计算时将小数点带下来就可以;如果除数有小数点,将除数与被除数的小数点同时移位,直到除数没有小数点。算盘也可以做除法运算。长除法俗称“长除”,适用于正式除法、小数除法、多项式除法(即因式分解)等较重视计算过程和商数的除法,过程中兼用了乘法和减法。使用长除法计算 1260257 ÷ 37 = 34061 {displaystyle {{1260257}div {37}}=34061} 的过程可以表示为:短除法是长除法的简化版本。在短除法里,被除数放中央,旁以一L型符号表示除法,被除数左侧为除数,下侧为商,省去了长除法逐层计算的过程。和整数之间的带余除法类似,一元多项式之间也可以进行带余除法。可以证明,设有多项式 A {displaystyle A} 和非零多项式 B {displaystyle B} ,则存在唯一的多项式 Q {displaystyle Q} 和 R {displaystyle R} ,满足:而多项式 R {displaystyle R} 若非零多项式,则其幂次严格小于 B {displaystyle B} 的幂次。作为特例,如果要计算某个多项式 P {displaystyle P} 除以一次多项式 X − a {displaystyle X-a} 得到的余多项式,可以直接将 a {displaystyle a} 代入到多项式 P {displaystyle P} 中。 P {displaystyle P} 除以 X − a {displaystyle X-a} 的余多项式是 P ( a ) {displaystyle P(a)} 。具体的计算可以使用类似直式除法的方式。例如,计算 X 3 − 12 X 2 − 42 {displaystyle X^{3}-12X^{2}-42} 除以 X − 3 {displaystyle X-3} ,列式如下:因此,商式是   X 2 − 9 X − 27 {displaystyle X^{2}-9X-27} ,余式是   − 123 {displaystyle -123} 。通常不定义除以零这种形式。亦即当除以0 或分数的分母为0 时,该式或该数无意义。

相关

  • 科洛尼斯希腊神话中有数个以科洛尼斯(Coronis ,Κορωνίς)为名的人物,因其不同意义而具有多重艺术形象,也是金牛座毕星团的溯源之一。这些人物包括:
  • 古教会斯拉夫语古教会斯拉夫语(ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ ⰧⰈⰟⰊⰍⰟ,словѣ́ньскъ ѩзꙑ́къ,slověnĭskŭ językŭ)也被称为古保加利亚语、古马其顿语、古斯拉夫语,它是斯拉夫语
  • 证明论证明论是数理逻辑的一个分支,它将数学证明表达为形式化的数学客体,从而通过数学技术来简化对他们的分析。证明通常用归纳式地定义的数据结构来表达,例如链表,盒链表,或者树,它们根
  • 费尼斯·盖吉费尼斯·盖吉(英语:Phineas Gage,1823年-1860年5月21日),美国铁路工头。他在一场意外事故中,被一支长铁棍由左下脸颊刺入,穿越左眼后方,再由额头上方头顶处穿出脑壳。他虽然奇迹似的
  • 衍射衍射(英语:diffraction),又称绕射,是指波遇到障碍物时偏离原来直线传播的物理现象。:559-560在经典物理学中,波在穿过狭缝、小孔或圆盘之类的障碍物后会发生不同程度的弯散传播。
  • Pu钚的同位素备注:画上#号的数据代表没有经过实验的证明,只是理论推测而已,而用括号括起来的代表数据不确定性。
  • 日本料理日本料理泛指日本的饮食方式,又称日餐、和食(日语:和食/わしょく Washoku ?;此名称更侧重于大和民族的饮食),是日本文化重要的一环。“日本料理”在日语解作“日本式烹饪”,但是此
  • 美国各州人口列表这是一个按人口排列的美国各州和领土列表,这些数据来自于美国人口调查局,日期为2009年7月1日,估计50个州和华盛顿哥伦比亚特区总人口为307,006,550人。美国各州的人口在20世纪
  • 莫尔浩司学院坐标:33°44′48″N 84°24′55″W / 33.74667°N 84.41528°W / 33.74667; -84.41528莫尔豪斯学院(英语:Morehouse College)是一个位于美国乔治亚州亚特兰大的私立文理学院、男
  • 简单过去时不定过去(Aorist,来自希腊语 αοριστός 没有范围,无限制)是用在某些印欧语言如古希腊语中的动词时态,用来指示行动,或在直陈语气中的过去行动,而不带有进一步蕴含。在其他语