派克变换

✍ dations ◷ 2025-06-30 09:15:25 #工具,电子工程,电动机

派克变换(也译作帕克变换,英语:Park's Transformation),是目前分析同步电动机运行最常用的一种坐标变换,由美国工程师派克(R.H.Park)在1929年提出。派克变换将定子的a,b,c三相电流投影到随着转子旋转的直轴(d轴),交轴(q轴)与垂直于dq平面的零轴(0轴)上去,从而实现了对定子电感矩阵的对角化,对同步电动机的运行分析起到了简化作用。

派克正变换:

逆变换:


派克变换也作用在定子电压与定子绕组磁链上: u d q 0 = P u a b c {\displaystyle {\mathbf {u} }_{dq0}={\mathbf {P} }{\mathbf {u} }_{abc}} Ψ d q 0 = P Ψ a b c {\displaystyle {\mathbf {\Psi } }_{dq0}={\mathbf {P} }{\mathbf {\Psi } }_{abc}}



磁链方程:


上式中的电感系数矩阵 L S S , L S R , L R S , L R R {\displaystyle {{\mathbf {L} }_{SS}},{{\mathbf {L} }_{SR}},{{\mathbf {L} }_{RS}},{{\mathbf {L} }_{RR}}} 事实上都含有随时间变化的角度参数,使得方程求解困难。

现对等式两边同时左乘 {\displaystyle \left} ,其中 U {\displaystyle {\mathbf {U} }} 为三阶单位矩阵。方程化为:



其中 P L S S P 1 = L d q 0 {\displaystyle {\mathbf {PL} }_{SS}{\mathbf {P} }^{-1}=\left\triangleq {\mathbf {L} }_{dq0}}


① 变换后的电感系数都变为常数,可以假想dd绕组,qq绕组是固定在转子上的,相对转子静止。

② 派克变换阵对定子自感矩阵 L S S {\displaystyle {\mathbf {L} }_{SS}} 起到了对角化的作用,并消去了其中的角度变量。 L d , L q , L 0 {\displaystyle {L_{d}},{L_{q}},{L_{0}}} 为其特征根。

③ 变换后定子和转子间的互感系数不对称,这是由于派克变换的矩阵不是正交矩阵。

L d {\displaystyle {L_{d}}} 为直轴同步电感系数,其值相当于当励磁绕组开路,定子合成磁势产生单纯直轴磁场时,任意一相定子绕组的自感系数。

电压方程:

现对等式两边同时左乘 {\displaystyle \left} ,其中 U {\displaystyle {\mathbf {U} }} 为三阶单位矩阵。方程化为:

Ψ d q 0 = P Ψ a b c {\displaystyle {\mathbf {\Psi } }_{dq0}={\mathbf {P\Psi } }_{abc}}

对两边求导,得 Ψ ˙ d q 0 = P ˙ Ψ a b c + P Ψ ˙ a b c {\displaystyle {\mathbf {\dot {\Psi }} }_{dq0}={\mathbf {{\dot {P}}\Psi } }_{abc}+{\mathbf {P{\dot {\Psi }}} }_{abc}}

所以 P Ψ ˙ a b c = Ψ ˙ d q 0 P ˙ Ψ a b c = Ψ ˙ d q 0 P ˙ P 1 Ψ d q 0 {\displaystyle {\mathbf {P{\dot {\Psi }}} }_{abc}={\mathbf {\dot {\Psi }} }_{dq0}-{\mathbf {{\dot {P}}\Psi } }_{abc}={\mathbf {\dot {\Psi }} }_{dq0}-{\mathbf {{\dot {P}}P} }^{-1}{\mathbf {\Psi } }_{dq0}}

其中 P ˙ P 1 = {\displaystyle {\mathbf {{\dot {P}}P} }^{-1}=\left} ,令 S = P ˙ P 1 Ψ d q 0 = = {\displaystyle {\mathbf {S} }={\mathbf {{\dot {P}}P} }^{-1}{\mathbf {\Psi } }_{dq0}=\left\left=\left}


于是有 = + {\displaystyle \left=\left\left+\left-\left}

上式右边第一项为绕组电阻的压降,第二项为变压器电势,第三项为发电机电势或旋转电势。


相关

  • 不死生物不死生物(英语:undead),又称不死族、亡灵族、死灵族,是指肉体已经死亡却还能活动的怪物,通常被认为是遗留人间的魂魄和具自我意识的尸体。不死生物以不同的型态出现在各地文化的传
  • 根茎根茎(英语:Rhizome)是植物在地下变态茎的一种。某些植物的枝干部分,但是并不在地面以上生长,而是在土壤中生长,从形态上看,又似植物的根。但根的作用是吸收土壤中的水和矿物质,而根
  • 贾耽贾耽(730年-805年10月27日),字敦诗,沧州南皮(今河北省沧州市南皮县)人。中国唐朝官员,仕至尚书左仆射、知政事。博学好古,尤以精通地理学著称于世。耽天宝十年(751年)以明经及第,乾元中
  • 湖广布政使司湖广等处承宣布政使司,简称湖广布政使司、湖广布政司,是明朝在江汉平原和洞庭湖流域等地的一级行政区及其行政机关名,为当时的明朝中国本部15个一级行政区(2京13省)及13个承宣布
  • 北海道狼北海道狼,又称虾夷狼,是一种已灭绝的狼,曾分布在日本的北海道,以及俄罗斯的萨哈林州(桦太、千岛群岛)一带,后来因为人类大量猎杀,导致北海道狼的数量减少,在1889年灭绝。北海道狼和分
  • 维多利亚 (格林纳达)维多利亚是格林纳达的城市之一,同时也是圣马克区的首府,位于该岛西海岸,在古亚夫和Nonpareil之间,海拔高度155米,2013年人口2,256。维多利亚是圣马克区的活动中心。
  • “怪人奥尔”扬科维奇“怪人奥尔”扬科维奇(英语:"Weird Al" Yankovic,1959年10月23日-),原名阿尔弗雷德·马修·扬科维奇(Alfred Matthew Yankovic),美国创作型恶搞歌手、音乐制作人、演员,曾三次获格莱美
  • 哈里·考恩哈里·考恩(Harry Cohn;1891年7月23日-1958年2月27日)是哥伦比亚影业的创始人之一,曾担任该公司总裁和制作总监,在世时是美国电影业最有权势的人之一。他出生于纽约市的一个犹太裔
  • 穴果木属穴果木属(学名:)是茜草科下的一个属,为藤状灌木植物。该属共有约17种,分布亚洲东南部至大洋洲。
  • 易贞美易贞美(1815年12月9日-1862年2月19日)是一位来自清朝四川绵阳的罗马天主教圣徒。 易贞美是家中最小的孩子,她在12岁时就已承诺守贞。易贞美平时喜欢读书,20岁那年,她生了一场大病