派克变换

✍ dations ◷ 2025-12-01 05:39:10 #工具,电子工程,电动机

派克变换(也译作帕克变换,英语:Park's Transformation),是目前分析同步电动机运行最常用的一种坐标变换,由美国工程师派克(R.H.Park)在1929年提出。派克变换将定子的a,b,c三相电流投影到随着转子旋转的直轴(d轴),交轴(q轴)与垂直于dq平面的零轴(0轴)上去,从而实现了对定子电感矩阵的对角化,对同步电动机的运行分析起到了简化作用。

派克正变换:

逆变换:


派克变换也作用在定子电压与定子绕组磁链上: u d q 0 = P u a b c {\displaystyle {\mathbf {u} }_{dq0}={\mathbf {P} }{\mathbf {u} }_{abc}} Ψ d q 0 = P Ψ a b c {\displaystyle {\mathbf {\Psi } }_{dq0}={\mathbf {P} }{\mathbf {\Psi } }_{abc}}



磁链方程:


上式中的电感系数矩阵 L S S , L S R , L R S , L R R {\displaystyle {{\mathbf {L} }_{SS}},{{\mathbf {L} }_{SR}},{{\mathbf {L} }_{RS}},{{\mathbf {L} }_{RR}}} 事实上都含有随时间变化的角度参数,使得方程求解困难。

现对等式两边同时左乘 {\displaystyle \left} ,其中 U {\displaystyle {\mathbf {U} }} 为三阶单位矩阵。方程化为:



其中 P L S S P 1 = L d q 0 {\displaystyle {\mathbf {PL} }_{SS}{\mathbf {P} }^{-1}=\left\triangleq {\mathbf {L} }_{dq0}}


① 变换后的电感系数都变为常数,可以假想dd绕组,qq绕组是固定在转子上的,相对转子静止。

② 派克变换阵对定子自感矩阵 L S S {\displaystyle {\mathbf {L} }_{SS}} 起到了对角化的作用,并消去了其中的角度变量。 L d , L q , L 0 {\displaystyle {L_{d}},{L_{q}},{L_{0}}} 为其特征根。

③ 变换后定子和转子间的互感系数不对称,这是由于派克变换的矩阵不是正交矩阵。

L d {\displaystyle {L_{d}}} 为直轴同步电感系数,其值相当于当励磁绕组开路,定子合成磁势产生单纯直轴磁场时,任意一相定子绕组的自感系数。

电压方程:

现对等式两边同时左乘 {\displaystyle \left} ,其中 U {\displaystyle {\mathbf {U} }} 为三阶单位矩阵。方程化为:

Ψ d q 0 = P Ψ a b c {\displaystyle {\mathbf {\Psi } }_{dq0}={\mathbf {P\Psi } }_{abc}}

对两边求导,得 Ψ ˙ d q 0 = P ˙ Ψ a b c + P Ψ ˙ a b c {\displaystyle {\mathbf {\dot {\Psi }} }_{dq0}={\mathbf {{\dot {P}}\Psi } }_{abc}+{\mathbf {P{\dot {\Psi }}} }_{abc}}

所以 P Ψ ˙ a b c = Ψ ˙ d q 0 P ˙ Ψ a b c = Ψ ˙ d q 0 P ˙ P 1 Ψ d q 0 {\displaystyle {\mathbf {P{\dot {\Psi }}} }_{abc}={\mathbf {\dot {\Psi }} }_{dq0}-{\mathbf {{\dot {P}}\Psi } }_{abc}={\mathbf {\dot {\Psi }} }_{dq0}-{\mathbf {{\dot {P}}P} }^{-1}{\mathbf {\Psi } }_{dq0}}

其中 P ˙ P 1 = {\displaystyle {\mathbf {{\dot {P}}P} }^{-1}=\left} ,令 S = P ˙ P 1 Ψ d q 0 = = {\displaystyle {\mathbf {S} }={\mathbf {{\dot {P}}P} }^{-1}{\mathbf {\Psi } }_{dq0}=\left\left=\left}


于是有 = + {\displaystyle \left=\left\left+\left-\left}

上式右边第一项为绕组电阻的压降,第二项为变压器电势,第三项为发电机电势或旋转电势。


相关

  • 前庭乳头状瘤病前庭乳头状瘤病(英语:Vestibular papillomatosis),是一类良性的女性皮肤病,其呈粉红色、无症状,易于检查到。它和男性的珍珠疹病理相同。它经常被错误诊断为尖锐湿疣。
  • 光谱仪光谱仪(Spectroscope)是将成分复杂的光,分解为光谱线的科学仪器,由棱镜或衍射光栅等构成。利用光谱仪可测量物体表面反射的光线。阳光中的七色光是肉眼能分的部分(可见光),但若通过
  • 甲型H10N7流感病毒H10N7是一种甲型流感病毒(有时称为禽流感)的亚种。在2004年,埃及首次爆发有人类感染的H10N7疫症。此次爆发感染了一些伊斯梅利亚的居民,包括两个一岁的婴儿和有一个孩子的家禽商
  • 月球号系列探测器月球号是苏联的第一个月球探测计划“月球计划”中所使用的空间探测器的名称。美国方面的对应计划是“先驱者计划”。先驱者计划所使用的探测器被命名为先驱者。美国第一个发
  • 杨鸿修杨鸿修(1864年-1944年),回族,山东冠县城内南街人,民国初年著名武术家,擅长查拳,是杨氏查拳的创始者。杨鸿修师承冠县查拳名师张金堂、马老为,有“大枪杨鸿修”、“快拳杨”的称号。其
  • 谭莉·欧布莱特谭莉·艾玛·欧布莱特(Tenley Emma Albright,1935年7月18日-)美国花样滑冰运动员,退役后成为外科医生。生于马萨诸塞州纽顿,曾获1956年冬季奥运会(英语:Figure skating at the 1956
  • 深夜FM《深夜FM》(韩语:심야의 FM,英语:)是一部韩国惊悚片,2010年10月14日发行于韩国,连续2周登上韩国周末排行榜,创下91亿韩元(约2亿4千万台币)的票房成绩。深夜电台节目《深夜FM》的电台DJ
  • 亨特·帕瑞施亨特·帕瑞施(英语:Hunter Parrish Tharp,1987年5月13日-),是一位美国知名男演员及男歌手,曾参与演出《我想念我自己》、《爱 找麻烦》、《回到17岁》、《休旅任务》等电影系列而有
  • 赤石斑鱼赤石斑鱼,又称黑边石斑鱼,俗名为石斑、格仔鱼、赤鮨,为辐鳍鱼纲鲈形目鲈亚目鮨科的其中一个种。该物种的模式产地在红海。本鱼广泛分布于印度洋-太平洋区,包括东非、日本、韩国、
  • 东旺乡 (曲阳县)东旺乡,是中华人民共和国河北省保定市曲阳县下辖的一个乡镇级行政单位。东旺乡下辖以下地区:大盖都村、小盖都村、田家庄村、南杏树村、西杏树村、北杏树村、仝东旺村、尚东旺