首页 >
转移矩阵
✍ dations ◷ 2025-04-26 12:39:48 #转移矩阵
在数学中,随机矩阵(stochastic matrix)是用来描述一个马尔可夫链的转变的矩阵,亦称为概率矩阵(probability matrix)、转移矩阵(transition matrix)、替代矩阵(substitution matrix)或马尔可夫矩阵(Markov matrix)。它的每一项都是一个表示概率的非负实数。它适用于概率论、统计学和线性代数,也在计算机科学和群体遗传学中使用。
有几种不同的定义和类型随机矩阵:同理,可以定义随机向量(也称为概率向量)为元素为非负实数且和为1的向量。因此,右随机矩阵的每一行(或左随机矩阵的每一列)都是一个随机向量。在英语数学文献中的惯例是用概率的行向量和概率的右随机矩阵,而不用列向量和左随机矩阵,本文遵循此惯例。随机矩阵描述了在一个有限状态空间 S 上的马尔可夫链
X
t
{displaystyle {boldsymbol {X}}_{t}}
。如果在一个时间步长内从
i
{displaystyle i}
到
j
{displaystyle j}
移动的概率为
Pr
(
j
|
i
)
=
P
i
,
j
{displaystyle operatorname {Pr} (j|i)=P_{i,j}}
,随机矩阵 P 的第
i
{displaystyle i}
行,第
j
{displaystyle j}
列元素由
P
i
,
j
{displaystyle P_{i,j}}
给出,例如,由于从状态
i
{displaystyle i}
到下一状态的概率总和必须是 1,这个矩阵是一个右随机矩阵,于是从
i
{displaystyle i}
到
j
{displaystyle j}
分两步转变的概率由然后由给定的
P
{displaystyle P}
的平方矩阵的
(
i
,
j
)
{displaystyle (i,j)}
号元素给出:一般地,在由矩阵
P
{displaystyle P}
给出的有限马尔可夫链上从任何状态转移到另一个状态的 k 步转移概率为
P
k
{displaystyle P^{k}}
。初始分布为一个行向量。平稳概率向量
π
{displaystyle {boldsymbol {pi }}}
定义为不随转移矩阵的运用而变化的一个向量;也就是说,它定义为概率矩阵的左特征向量,其特征值为1:佩龙一弗罗宾尼斯定理(英语:Perron–Frobenius theorem)保证了每个随机矩阵都具有这样的向量,而特征值的最大绝对值始终为1。在一般情况下,可能有多个这样的向量。然而,对于具有严格正项的矩阵,该向量是唯一的,并可以观察到对任意
i
{displaystyle i}
我们都有以下极限而求出,其中
π
j
{displaystyle {boldsymbol {pi }}_{j}}
是行向量
π
{displaystyle {boldsymbol {pi }}}
的第
j
{displaystyle j}
个元素。在其他方面,这表示处在状态
j
{displaystyle j}
下的长期概率与初始状态
i
{displaystyle i}
是独立的。这两种计算得到相同的稳定向量是遍历定理的一种形式,在各种各样的耗散动力系统广泛成立:该系统随着时间演变到定态。直观地看,随机矩阵表示一个马尔可夫链;对概率分布应用随机矩阵,就是将原始分布的概率质量进行重新分布,同时保持其总质量。如果反复应用此过程,分布就会收敛为马尔可夫链的平稳分布。转移矩阵可用以表示概率(或变化比率),而矩阵相乘的结果可用以预测未来事件发生的概率。设
A
{displaystyle mathbf {A} }
、
B
{displaystyle mathbf {B} }
为二个n×n阶转移矩阵,则以下亦为转移矩阵:假设你有一个计时器和五个相邻的格子排成一行,零时刻有一只猫在第一个格子中,而一只老鼠在第五个格子中。在计时器增加的时候猫和老鼠都会随机跳到一个相邻的格子中。例如,如果猫在第二个格子,老鼠在第四个,在计时器增加后,猫会出现在第一个格子且老鼠会出现在第五个格子的概率为1/4。如果猫在第一个格子而老鼠在第五个,那么计时器增加后,猫会出现在第二个格子且老鼠会出现在第四个的概率为1。当它们处于同一个格子的时候,猫会吃掉老鼠,游戏结束。随机变量 K 给出了老鼠仍留在游戏中的时间步长。表示这个包含五种位置组合 (猫,鼠) 的状态的游戏的马尔可夫链为:我们使用一个随机矩阵来表示这个系统的转移概率(这个矩阵中的行和列用上面提到的可能状态来索引),无论初始状态是什么,猫最终都会抓到老鼠(概率为1),且极限为稳态 π = (0,0,0,0,1)。要计算随机变量 Y 的长期平均或期望值。对每种状态 Sj 和时间 tk,都有 Yj,k·P(S=Sj,t=tk) 的贡献。生存与否可以视作一个二值变量,Y=1 代表生存状态而 Y=0 代表终止状态。Y=0 的状态不对长期平均有贡献。由于状态 5 是一个吸收态,吸收对时间的分布为离散位相型分布(英语:Discrete phase-type distribution)。假设系统从状态 2 开始,表示为向量
[
0
,
1
,
0
,
0
,
0
]
{displaystyle }
。老鼠死亡后的状态不会对生存平均产生影响,所以状态五可以忽略。初始状态和转移矩阵可以化简为,以及,其中
I
{displaystyle I}
为单位矩阵,
1
{displaystyle mathbf {1} }
表示全为1的列矩阵,进行状态的相加。由于每个状态都占据一个时间步长,老鼠生存时间的期望就是在所有生存状态和时间步长中占据的概率之和,其高阶矩为
相关
- 黑人手语美国黑人手语(英语:Black American Sign Language,缩写作 BASL)又名黑人手语分支(Black Sign Variation,缩写作 BSV),是美国手语方言,在美国的非裔聋哑人群体中最为常见。作为美国手
- 资源水资源包括经人类控制并直接可供灌溉、发电、给水、航运、养殖等用途的地表水和地下水,以及江河、湖泊、井、泉、潮汐、港湾和养殖水域等。水资源是发展国民经济不可缺少的重
- 空白页空白页即空的页面,不写有或印有任何的内容。加入这些页面通常是因为方便钉装,或排版或分隔内容上的需要。有时这些空白页上会印有“此页留空”或类似的字句,例如在法律文件、使
- 电子流行病学电子流行病学(英语:E-epidemiology)是指通过互联网、移动电话、数字纸、数字电视等数字媒体获得、完善与应用流行病学知识信息的科学。此外还可指通过互联网的全球协作所促成的
- 问卷调查问卷调查是有目标对象的意见调查的其中一个方法,问卷调查的形式是由一连串写好的小问题组成,然后去访问,收集被访问者的意见、感受、反应及对知识的认识等。可以在很短的时间内
- 宪政古罗马政府与政治 系列条目罗马共和国前509年–前27年 罗马帝国前27年–1453年元首制西罗马帝国君主制东罗马帝国王政时代宪政(英语:Constitution of the Roman Kingdom) 共和
- 丙酮酸羧化酶结构 / ECOD丙酮酸羧化酶,属于连接酶类的酶,催化(根据不同的物种)丙酮酸的可逆羧基化,形成草酰乙酸。丙酮酸草酰乙酸EC 1.1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19/20/2
- 介质介质或Medium可以指:
- 豹1型坦克豹1(德语:Leopard 1)是西德于冷战时期研制的一种主战坦克,它于1965年开始生产,是联邦德国在第二次世界大战重建军队后首款研发出来的主力坦克。豹1总共投入到全世界4个大陆11个国
- 怀特腓怀特腓德(George Whitefield,1714年12月27日-1770年9月30日)是基督教大觉醒运动中的重要人物之一,循道宗的共同创始人。怀特腓德1714年12月27日生于英国格洛斯特,12岁时已发挥演说