首页 >
转移矩阵
✍ dations ◷ 2024-12-22 16:24:10 #转移矩阵
在数学中,随机矩阵(stochastic matrix)是用来描述一个马尔可夫链的转变的矩阵,亦称为概率矩阵(probability matrix)、转移矩阵(transition matrix)、替代矩阵(substitution matrix)或马尔可夫矩阵(Markov matrix)。它的每一项都是一个表示概率的非负实数。它适用于概率论、统计学和线性代数,也在计算机科学和群体遗传学中使用。
有几种不同的定义和类型随机矩阵:同理,可以定义随机向量(也称为概率向量)为元素为非负实数且和为1的向量。因此,右随机矩阵的每一行(或左随机矩阵的每一列)都是一个随机向量。在英语数学文献中的惯例是用概率的行向量和概率的右随机矩阵,而不用列向量和左随机矩阵,本文遵循此惯例。随机矩阵描述了在一个有限状态空间 S 上的马尔可夫链
X
t
{displaystyle {boldsymbol {X}}_{t}}
。如果在一个时间步长内从
i
{displaystyle i}
到
j
{displaystyle j}
移动的概率为
Pr
(
j
|
i
)
=
P
i
,
j
{displaystyle operatorname {Pr} (j|i)=P_{i,j}}
,随机矩阵 P 的第
i
{displaystyle i}
行,第
j
{displaystyle j}
列元素由
P
i
,
j
{displaystyle P_{i,j}}
给出,例如,由于从状态
i
{displaystyle i}
到下一状态的概率总和必须是 1,这个矩阵是一个右随机矩阵,于是从
i
{displaystyle i}
到
j
{displaystyle j}
分两步转变的概率由然后由给定的
P
{displaystyle P}
的平方矩阵的
(
i
,
j
)
{displaystyle (i,j)}
号元素给出:一般地,在由矩阵
P
{displaystyle P}
给出的有限马尔可夫链上从任何状态转移到另一个状态的 k 步转移概率为
P
k
{displaystyle P^{k}}
。初始分布为一个行向量。平稳概率向量
π
{displaystyle {boldsymbol {pi }}}
定义为不随转移矩阵的运用而变化的一个向量;也就是说,它定义为概率矩阵的左特征向量,其特征值为1:佩龙一弗罗宾尼斯定理(英语:Perron–Frobenius theorem)保证了每个随机矩阵都具有这样的向量,而特征值的最大绝对值始终为1。在一般情况下,可能有多个这样的向量。然而,对于具有严格正项的矩阵,该向量是唯一的,并可以观察到对任意
i
{displaystyle i}
我们都有以下极限而求出,其中
π
j
{displaystyle {boldsymbol {pi }}_{j}}
是行向量
π
{displaystyle {boldsymbol {pi }}}
的第
j
{displaystyle j}
个元素。在其他方面,这表示处在状态
j
{displaystyle j}
下的长期概率与初始状态
i
{displaystyle i}
是独立的。这两种计算得到相同的稳定向量是遍历定理的一种形式,在各种各样的耗散动力系统广泛成立:该系统随着时间演变到定态。直观地看,随机矩阵表示一个马尔可夫链;对概率分布应用随机矩阵,就是将原始分布的概率质量进行重新分布,同时保持其总质量。如果反复应用此过程,分布就会收敛为马尔可夫链的平稳分布。转移矩阵可用以表示概率(或变化比率),而矩阵相乘的结果可用以预测未来事件发生的概率。设
A
{displaystyle mathbf {A} }
、
B
{displaystyle mathbf {B} }
为二个n×n阶转移矩阵,则以下亦为转移矩阵:假设你有一个计时器和五个相邻的格子排成一行,零时刻有一只猫在第一个格子中,而一只老鼠在第五个格子中。在计时器增加的时候猫和老鼠都会随机跳到一个相邻的格子中。例如,如果猫在第二个格子,老鼠在第四个,在计时器增加后,猫会出现在第一个格子且老鼠会出现在第五个格子的概率为1/4。如果猫在第一个格子而老鼠在第五个,那么计时器增加后,猫会出现在第二个格子且老鼠会出现在第四个的概率为1。当它们处于同一个格子的时候,猫会吃掉老鼠,游戏结束。随机变量 K 给出了老鼠仍留在游戏中的时间步长。表示这个包含五种位置组合 (猫,鼠) 的状态的游戏的马尔可夫链为:我们使用一个随机矩阵来表示这个系统的转移概率(这个矩阵中的行和列用上面提到的可能状态来索引),无论初始状态是什么,猫最终都会抓到老鼠(概率为1),且极限为稳态 π = (0,0,0,0,1)。要计算随机变量 Y 的长期平均或期望值。对每种状态 Sj 和时间 tk,都有 Yj,k·P(S=Sj,t=tk) 的贡献。生存与否可以视作一个二值变量,Y=1 代表生存状态而 Y=0 代表终止状态。Y=0 的状态不对长期平均有贡献。由于状态 5 是一个吸收态,吸收对时间的分布为离散位相型分布(英语:Discrete phase-type distribution)。假设系统从状态 2 开始,表示为向量
[
0
,
1
,
0
,
0
,
0
]
{displaystyle }
。老鼠死亡后的状态不会对生存平均产生影响,所以状态五可以忽略。初始状态和转移矩阵可以化简为,以及,其中
I
{displaystyle I}
为单位矩阵,
1
{displaystyle mathbf {1} }
表示全为1的列矩阵,进行状态的相加。由于每个状态都占据一个时间步长,老鼠生存时间的期望就是在所有生存状态和时间步长中占据的概率之和,其高阶矩为
相关
- 变异突变(英语:Mutation,即基因突变)在生物学上的含义,是指细胞中的遗传基因(通常指存在于细胞核中的去氧核糖核酸)发生的改变。它包括单个碱基改变所引起的点突变,或多个碱基的缺失、重
- 疫苗疫苗是用细菌、病毒、肿瘤细胞等制成的可使机体产生特异性免疫的生物制剂,通过疫苗接种使接受方获得免疫力。英语中,疫苗一词“vaccine”源自于爱德华·金纳所使用的牛痘。“v
- Cefixime头孢克肟(Cefixime)是一种口服的第三代头孢菌素抗生素,通常用于治疗淋病、扁桃腺炎和咽炎。常用剂量为400毫克。头孢克肟在美国以“Suprax”的名称发售,直到2003年,当它的专利失
- 氯霉素氯霉素(Chloramphenicol)是一种抗生素,可用于治疗许多细菌感染症状,包括脑膜炎、瘟疫、霍乱和伤寒等。只有在不能使用其他较安全的抗生素时,才会建议用氯霉素。治疗期间,建议每两
- Q30–Q34ICD-10 第十七章:先天畸形、变形和染色体异常,为ICD规定的各类先天畸形、变形和染色体异常。Q00-Q07 神经系统先天性畸形Q10-Q18 眼、耳、面和颈部先天性畸形Q20-Q28 循环系统
- 中华民国环保署坐标:25°02′19″N 121°30′28″E / 25.03861°N 121.50778°E / 25.03861; 121.50778行政院环境保护署(简称环保署)是中华民国环境保护事务的最高主管机关,前身为1971年3月成
- 食用油食用油,或称食油是纯化后供烹饪用的动物或植物油脂,于室温中呈液态或固态。常见的食油多数为植物油,通常用油料作物的种子经压榨或萃取获得。包括粟米油、花生油、橄榄油、芥花
- 酸梅酸梅是以梅子(梅的果实)为材料加上糖、盐、醋等腌制而成的加工食品。酸梅被认为是一种碱性食品,许多人相信多吃酸梅能够帮助血液呈弱碱性,但由于酸梅的制作中往往以盐来做为脱水
- 端粒酶RNA· multicellular organismal aging biological process · negative regulation of apoptosis biological process · positive regulation of telomere maintenance via
- 约翰·梅杰约翰·梅杰爵士,KG,CH (英语:Sir John Major,1943年3月29日-)是一名英国政治家,于1990年至1997年出任英国首相和英国保守党党魁。他曾于1987年至1990年间在玛格利特·撒切尔内阁相继