圆群

✍ dations ◷ 2025-12-11 04:03:14 #群论,拓扑群,李群


无限单李群:An, Bn, Cn, Dn,
特殊单李群 G2(英语:G2 (mathematics)) F4E6 E7E8(英语:E8 (mathematics))

在数学里,圆群标记为T,为所有模为1之复数所组成的乘法群,即在复平面上的单位圆。

圆群为所有非零复数所组成之乘法群C×的子群。由于C×可交换,T也是可交换的。

圆群的符号T源自于T(个T的直积)几何上是个-环面的此一事实。而圆群即正是一个1-环面。

思考圆群的一种方法是描述其“角度”如何相加,其中只有0至360度的角度是被允许的。例如,右边的图表描述著如何将150度加上270度。其答案应该是150度+270度=420度,但以圆群的观点来考虑,而必须要“忘记”扫过一整个圆的事实。因此,必须以360度来调整其答案,如此将会得出420度−360度=60度之答案。

另一种描述方法是使用原本的加法,但数字只限定在0和1之间。要完成此一描述,必须丢掉小数点前的数位。例如,当在算0.784+0.925+0.446时,其答案应该是2.155,但这里必须丢掉前面的2,因此其答案(在圆群中)会是0.155。

圆群不只是一个抽象代数群而已。当将其视为复平面的子空间时,其会有一个自然的拓扑。因为乘法和反演是在C×上的连续函数,圆群会有一拓扑群的结构。更甚地,当单位圆是复平面上的一个闭子集时,圆群也会是C×(其自身被视为是一拓扑群)的闭子群。

更多地,因为圆是一个一维实流形且其乘法和反演为圆上的圆变映射,这给了圆群一个一维李群的结构。实际上,以同构来分,其为唯一的一个同构于T的一维紧致连通李群

圆群在数学里可承现出很多种不同的类型。下面列出较常见的几种类型,并证明

由所有一阶酉矩阵(即单位复数)所组成之群显然与圆群相对应;其酉的条件即等价于其元素的模为1的条件。因此圆群会同构于第一个酉群U(1)。

纯虚数指数函数会产生一个由实数加法群R映射至圆群T上之群同态exp:R→T,其映射为

其最后一个等式为欧拉公式。实数会对应到单位圆上由正轴量起的角度。这个映射是一个同态,因为单位复数的乘法可以对应到角度的加法上:

此一指数映射很明显地是一个由R映射至T的满射函数,但它不是单射。这个映射的核为所有整数倍之集合。基于第一同构定理,会有着

调整一下尺度后,也可以说T同构于R/Z。

若将复数视为二阶实矩阵(见复数),单位复数则会对应至有单位行列式的二阶正交矩阵上。具体地说,会有如下之对应关系

圆群因此会同构于特殊正交群SO(2)。此处有着一个单位复数之乘法的几何解释,即为复平面上的旋转,并且任何旋转都可表达成这种形式。

任何大于0之维度的紧致李群都会有一个会同构于圆群的子群。这是指以对称的观点来思考,一“连续”作用的紧致对称群可以被表示成有一作用着的单参数圆子群;其在物理系统上的结果可以有如旋转不变性和自发性对称破坏等例子。

圆群有许多个子群,但其纯紧致子群只由单位根所构成。

圆群的表示是很容易描述的。舒尔引理描述说一个阿贝尔群的所有不可约复表示都是一维的。圆群是紧致的,任一表示 ρ : T G L 1 ( C ) C × {\displaystyle \rho \colon \mathbb {T} \to \mathrm {GL} _{1}(\mathbb {C} )\cong \mathbb {C} ^{\times }} ,因为表示 ρ n {\displaystyle \rho _{-n}} 次单位根所组成之集合,且会同构于Q/Z。可除群的结构定理表示T会同构于Q/Z和一串Q的直积。这一串Q的数目必须为(连续势)为了使直积的势会是正确的。但个Q的直积会同构于R,R如同是在Q上的维向量空间。因此

同构

也可以以同样的方式证明,因为C×也是其挠子群和T的挠子群相同的可除阿贝尔群。

相关

  • 精神分析精神分析学(英文:Psychoanalysis)或称心理分析学,是于19世纪末期由奥地利神经学家西格蒙德·弗洛伊德的创立的一门学科。当时精神病学普遍受生物学的影响,对于心理现象的构成、发
  • 阿迪杰河阿迪杰河(意大利语:Adige;德语:Etsch)位于意大利东北部,发源于意大利、奥地利和瑞士边境处阿尔卑斯山脉的里西亚隘口(Resia),先向东,后折向南流,经过特伦托、维罗纳等城市,最终注入亚
  • 皮尔尼茨宣言《皮尔尼茨宣言》于1791年8月27日在今德国萨克森州皮尔尼茨发布,签署人为神圣罗马帝国皇帝利奥波德二世和普鲁士国王腓特烈·威廉二世。宣言号召欧洲列强支持法国国王路易十
  • 玛格丽特·斯佩林斯玛格丽特·斯佩林斯(Margaret Spellings,1957年11月30日-),美国政治家,美国共和党成员,前美国教育部长(2005年至2009年)。
  • 水母发光蛋白水母素(英语:Aequorin,又译埃奎明,分子量:相对分子约35000)是一种生物发光蛋白质,属荧光素酶,具蛋白质一般特性,双缩脲和茚三酮反应均呈阳性,遇硫酸铵时沉淀。高温时荧光迅速消失。pH
  • 顽童流浪记《哈克贝利·芬历险记》(英语:Adventures of Huckleberry Finn),又译为《赫克历险记》、《哈克历险记》、《顽童流浪记》,是一部美国著名作家马克·吐温的儿童文学作品,为美国文学
  • 英格兰裔英格兰裔美国人(英语:English Americans),指祖先或部分祖先来自英格兰的美国国民,属于英国裔美国人(包括英格兰裔美国人、苏格兰裔美国人、威尔士裔美国人,以及来自北爱尔兰的爱尔
  • 埃及第二十二王朝第 八第 十埃及第二十二王朝是古埃及第三中间时期的一个王朝,其法老都来自布巴斯提斯这座城市,因此又被称为布巴斯提斯王朝。第二十二王朝与第二十一王朝、第二十三王朝、第二
  • 莱奥波德·奥尔莱奥波德·奥尔(英语:Leopold Auer,匈牙利语原名:Auer Lipót,1845年6月7日-1930年7月15日),匈牙利小提琴演奏家、作曲家、音乐教师。奥尔诞生在匈牙利的维斯普雷姆,在布达佩斯以及维
  • 斯特拉斯堡 (科罗拉多州)斯特拉斯堡(英语:Strasburg)是位于美国科罗拉多州亚当斯县的一个人口普查指定地区。斯特拉斯堡的座标为39°44′10″N 104°19′43″W / 39.73611°N 104.32861°W / 39.73611;