圆群

✍ dations ◷ 2025-09-19 12:40:53 #群论,拓扑群,李群


无限单李群:An, Bn, Cn, Dn,
特殊单李群 G2(英语:G2 (mathematics)) F4E6 E7E8(英语:E8 (mathematics))

在数学里,圆群标记为T,为所有模为1之复数所组成的乘法群,即在复平面上的单位圆。

圆群为所有非零复数所组成之乘法群C×的子群。由于C×可交换,T也是可交换的。

圆群的符号T源自于T(个T的直积)几何上是个-环面的此一事实。而圆群即正是一个1-环面。

思考圆群的一种方法是描述其“角度”如何相加,其中只有0至360度的角度是被允许的。例如,右边的图表描述著如何将150度加上270度。其答案应该是150度+270度=420度,但以圆群的观点来考虑,而必须要“忘记”扫过一整个圆的事实。因此,必须以360度来调整其答案,如此将会得出420度−360度=60度之答案。

另一种描述方法是使用原本的加法,但数字只限定在0和1之间。要完成此一描述,必须丢掉小数点前的数位。例如,当在算0.784+0.925+0.446时,其答案应该是2.155,但这里必须丢掉前面的2,因此其答案(在圆群中)会是0.155。

圆群不只是一个抽象代数群而已。当将其视为复平面的子空间时,其会有一个自然的拓扑。因为乘法和反演是在C×上的连续函数,圆群会有一拓扑群的结构。更甚地,当单位圆是复平面上的一个闭子集时,圆群也会是C×(其自身被视为是一拓扑群)的闭子群。

更多地,因为圆是一个一维实流形且其乘法和反演为圆上的圆变映射,这给了圆群一个一维李群的结构。实际上,以同构来分,其为唯一的一个同构于T的一维紧致连通李群

圆群在数学里可承现出很多种不同的类型。下面列出较常见的几种类型,并证明

由所有一阶酉矩阵(即单位复数)所组成之群显然与圆群相对应;其酉的条件即等价于其元素的模为1的条件。因此圆群会同构于第一个酉群U(1)。

纯虚数指数函数会产生一个由实数加法群R映射至圆群T上之群同态exp:R→T,其映射为

其最后一个等式为欧拉公式。实数会对应到单位圆上由正轴量起的角度。这个映射是一个同态,因为单位复数的乘法可以对应到角度的加法上:

此一指数映射很明显地是一个由R映射至T的满射函数,但它不是单射。这个映射的核为所有整数倍之集合。基于第一同构定理,会有着

调整一下尺度后,也可以说T同构于R/Z。

若将复数视为二阶实矩阵(见复数),单位复数则会对应至有单位行列式的二阶正交矩阵上。具体地说,会有如下之对应关系

圆群因此会同构于特殊正交群SO(2)。此处有着一个单位复数之乘法的几何解释,即为复平面上的旋转,并且任何旋转都可表达成这种形式。

任何大于0之维度的紧致李群都会有一个会同构于圆群的子群。这是指以对称的观点来思考,一“连续”作用的紧致对称群可以被表示成有一作用着的单参数圆子群;其在物理系统上的结果可以有如旋转不变性和自发性对称破坏等例子。

圆群有许多个子群,但其纯紧致子群只由单位根所构成。

圆群的表示是很容易描述的。舒尔引理描述说一个阿贝尔群的所有不可约复表示都是一维的。圆群是紧致的,任一表示 ρ : T G L 1 ( C ) C × {\displaystyle \rho \colon \mathbb {T} \to \mathrm {GL} _{1}(\mathbb {C} )\cong \mathbb {C} ^{\times }} ,因为表示 ρ n {\displaystyle \rho _{-n}} 次单位根所组成之集合,且会同构于Q/Z。可除群的结构定理表示T会同构于Q/Z和一串Q的直积。这一串Q的数目必须为(连续势)为了使直积的势会是正确的。但个Q的直积会同构于R,R如同是在Q上的维向量空间。因此

同构

也可以以同样的方式证明,因为C×也是其挠子群和T的挠子群相同的可除阿贝尔群。

相关

  • 年度风云人物时代杂志年度风云人物(英语:Time Person of the Year)是美国《时代》于每年年底评选出的当年度对世界最具有影响力的事物。获选对象可以是个人、夫妇、一群人、概念、地方甚至
  • 东濠涌东濠涌是珠江广州段的主要河涌之一。其发源于白云山下的麓湖,在麓景路入地下暗河,经下塘西路至小北路,在北较场路附近转为明渠,沿越秀路一直南下,在江湾大酒店(粤文:廣信江灣新城大
  • 李亦园中央研究院民族学研究所研究员(1955年-1998年)中央研究院民族学研究所所长(1968年-1977年)国立清华大学教授(1984年-1999年)国立清华大学人文社会学院院长(1984年-1990年)匹兹堡大学人类
  • 威廉·库欣威廉·库欣(英语:William Cushing;1732年3月1日-1810年9月13日)或译为威廉·顾盛,马萨诸塞州人,1789-1810年担任美国最高法院大法官, 为华盛顿总统任命的美国最早六位大法官之一,也是
  • 玉津玉津(越南语:Ngọc Tân,1948年-)是越南歌唱家,出生在河内,祖籍海防。以歌曲《Chiều trên bến cảng》和关于河内的歌曲《Hà Nôi và tôi》,《Người Hà Nội》,《Hà Nội n
  • 柜台买卖柜台买卖或称店头市场、场外交易(英语:Over-the-counter或OTC),为有价证券不在集中市场上以竞价方式买卖,而在证券商营业柜台以议价方式进行的交易行为。由柜台买卖所形成的市场,
  • HacmpHACMP是IBM为其生产的P系列unix服务器产品推出的集群软件,主要应用于AIX操作系统上从HACMP5.5版本开始,hacmp名称更改为PowerHA最新的PowerHA版本为PowerHA7.1
  • BALDR SKY《BALDR SKY》是由戏画于2009年发售的恋爱冒险与动作类型成人游戏。BALDR系列的第五作,由TEAM BALDRHEAD负责制作。作品分为“Dive1 "LostMemory"”和“Dive2 "RECORDARE"”
  • 寿安镇 (成都市)寿安镇,是中华人民共和国四川省成都市温江区下辖的一个乡镇级行政单位。寿安镇下辖以下地区:吴家场社区、汪家湾社区、团结社区、百花社区、喻庙社区、复兴社区、东岳社区、天
  • 克雷格·费格斯克雷格·费格斯(英语:Craig Ferguson,1962年5月17日-),又译克雷格·费格森,苏格兰出身的美国CBS晚间娱乐节目《深夜秀》的主持人,他另外还是喜剧演员、电视制片人和电视剧本作家。克