圆群

✍ dations ◷ 2025-10-25 07:23:47 #群论,拓扑群,李群


无限单李群:An, Bn, Cn, Dn,
特殊单李群 G2(英语:G2 (mathematics)) F4E6 E7E8(英语:E8 (mathematics))

在数学里,圆群标记为T,为所有模为1之复数所组成的乘法群,即在复平面上的单位圆。

圆群为所有非零复数所组成之乘法群C×的子群。由于C×可交换,T也是可交换的。

圆群的符号T源自于T(个T的直积)几何上是个-环面的此一事实。而圆群即正是一个1-环面。

思考圆群的一种方法是描述其“角度”如何相加,其中只有0至360度的角度是被允许的。例如,右边的图表描述著如何将150度加上270度。其答案应该是150度+270度=420度,但以圆群的观点来考虑,而必须要“忘记”扫过一整个圆的事实。因此,必须以360度来调整其答案,如此将会得出420度−360度=60度之答案。

另一种描述方法是使用原本的加法,但数字只限定在0和1之间。要完成此一描述,必须丢掉小数点前的数位。例如,当在算0.784+0.925+0.446时,其答案应该是2.155,但这里必须丢掉前面的2,因此其答案(在圆群中)会是0.155。

圆群不只是一个抽象代数群而已。当将其视为复平面的子空间时,其会有一个自然的拓扑。因为乘法和反演是在C×上的连续函数,圆群会有一拓扑群的结构。更甚地,当单位圆是复平面上的一个闭子集时,圆群也会是C×(其自身被视为是一拓扑群)的闭子群。

更多地,因为圆是一个一维实流形且其乘法和反演为圆上的圆变映射,这给了圆群一个一维李群的结构。实际上,以同构来分,其为唯一的一个同构于T的一维紧致连通李群

圆群在数学里可承现出很多种不同的类型。下面列出较常见的几种类型,并证明

由所有一阶酉矩阵(即单位复数)所组成之群显然与圆群相对应;其酉的条件即等价于其元素的模为1的条件。因此圆群会同构于第一个酉群U(1)。

纯虚数指数函数会产生一个由实数加法群R映射至圆群T上之群同态exp:R→T,其映射为

其最后一个等式为欧拉公式。实数会对应到单位圆上由正轴量起的角度。这个映射是一个同态,因为单位复数的乘法可以对应到角度的加法上:

此一指数映射很明显地是一个由R映射至T的满射函数,但它不是单射。这个映射的核为所有整数倍之集合。基于第一同构定理,会有着

调整一下尺度后,也可以说T同构于R/Z。

若将复数视为二阶实矩阵(见复数),单位复数则会对应至有单位行列式的二阶正交矩阵上。具体地说,会有如下之对应关系

圆群因此会同构于特殊正交群SO(2)。此处有着一个单位复数之乘法的几何解释,即为复平面上的旋转,并且任何旋转都可表达成这种形式。

任何大于0之维度的紧致李群都会有一个会同构于圆群的子群。这是指以对称的观点来思考,一“连续”作用的紧致对称群可以被表示成有一作用着的单参数圆子群;其在物理系统上的结果可以有如旋转不变性和自发性对称破坏等例子。

圆群有许多个子群,但其纯紧致子群只由单位根所构成。

圆群的表示是很容易描述的。舒尔引理描述说一个阿贝尔群的所有不可约复表示都是一维的。圆群是紧致的,任一表示 ρ : T G L 1 ( C ) C × {\displaystyle \rho \colon \mathbb {T} \to \mathrm {GL} _{1}(\mathbb {C} )\cong \mathbb {C} ^{\times }} ,因为表示 ρ n {\displaystyle \rho _{-n}} 次单位根所组成之集合,且会同构于Q/Z。可除群的结构定理表示T会同构于Q/Z和一串Q的直积。这一串Q的数目必须为(连续势)为了使直积的势会是正确的。但个Q的直积会同构于R,R如同是在Q上的维向量空间。因此

同构

也可以以同样的方式证明,因为C×也是其挠子群和T的挠子群相同的可除阿贝尔群。

相关

  • 脑损伤脑损伤(Brain damage)或脑部受伤(brain injury,简称BI)是指人脑细胞的受损或是退化。脑损伤可能因为一些内在或是外在的因素所造成。一般而言,会用“脑损伤”来表达一般明显的,因为
  • 幻数幻数(英语:Magic Number),又称魔数,是指原子核中质子数和中子数的某个特定数值。当质子数或中子数为幻数,或者二者取值均为幻数时,原子核会显示出较高的稳定性。目前已经确认的幻数
  • 绝美之城《绝美之城》(意大利语:La grande bellezza)是一部保罗·索伦蒂诺执导的2013年意大利电影,由意大利与法国公司合制而成。2012年8月9日在罗马开拍,在第66届戛纳电影节主竞赛单元亮
  • 伪钞制造者《伪钞制造者》(德语:Die Fälscher)是一部2007年的电影,由斯戴芬·卢佐维茨基编导。故事是根据二战中纳粹的伯赫德行动改编,该秘密行动试图通过伪造英镑来扰乱英国金融秩序。
  • 纽约州国民警卫队1903年 - 现今 English colonial government militias: since December 13, 1636 As "National Guard": since 1824 in New York, since 1903 nationwide Dual state-feder
  • 尤马人奎查恩人(Quechan)又称尤马人(Yuma),是美国西南的一个印第安人部落。他们生活在亚利桑那州科罗拉多河畔。奎查恩人是他们自称的名字。这个名字来自一条路的名字,传说他们的祖先来
  • 扎根理论扎根理论(英语:Grounded theory),是美国学者格拉塞(Barney G. Glaser)和斯特劳斯(Anselm Strauss)在1967年的著作《扎根理论的发现》中提出的理论。研究人员在研究开始前未进行理论
  • 胡安·卡洛斯一世号战略投射舰胡安·卡洛斯一世号(西班牙语:Juan Carlos I (L-61))是西班牙海军旗下一艘融合了轻型航空母舰与两栖突击舰功能的多用途军舰,由西班牙国营造船集团纳凡蒂亚(西班牙语:Navantia)(Nava
  • 卢襄卢襄(1481年-1531年),字师陈,号五坞山人,苏州府吴县人,明朝政治人物。卢雍弟。嘉靖二年(1523年)进士。授刑部主事,改兵部。嘉靖三年(1524年)大礼议期间,参与左顺门事件,受廷杖。升兵部郎中
  • 国际记者联盟国际记者联盟(英语:International Federation of Journalists,缩写IFJ),是世界最大的国际性记者组织,其宗旨在于保护与强化记者的人权与自由。该组最早成立于1926年,原总部设于巴黎