圆群

✍ dations ◷ 2025-12-04 16:17:30 #群论,拓扑群,李群


无限单李群:An, Bn, Cn, Dn,
特殊单李群 G2(英语:G2 (mathematics)) F4E6 E7E8(英语:E8 (mathematics))

在数学里,圆群标记为T,为所有模为1之复数所组成的乘法群,即在复平面上的单位圆。

圆群为所有非零复数所组成之乘法群C×的子群。由于C×可交换,T也是可交换的。

圆群的符号T源自于T(个T的直积)几何上是个-环面的此一事实。而圆群即正是一个1-环面。

思考圆群的一种方法是描述其“角度”如何相加,其中只有0至360度的角度是被允许的。例如,右边的图表描述著如何将150度加上270度。其答案应该是150度+270度=420度,但以圆群的观点来考虑,而必须要“忘记”扫过一整个圆的事实。因此,必须以360度来调整其答案,如此将会得出420度−360度=60度之答案。

另一种描述方法是使用原本的加法,但数字只限定在0和1之间。要完成此一描述,必须丢掉小数点前的数位。例如,当在算0.784+0.925+0.446时,其答案应该是2.155,但这里必须丢掉前面的2,因此其答案(在圆群中)会是0.155。

圆群不只是一个抽象代数群而已。当将其视为复平面的子空间时,其会有一个自然的拓扑。因为乘法和反演是在C×上的连续函数,圆群会有一拓扑群的结构。更甚地,当单位圆是复平面上的一个闭子集时,圆群也会是C×(其自身被视为是一拓扑群)的闭子群。

更多地,因为圆是一个一维实流形且其乘法和反演为圆上的圆变映射,这给了圆群一个一维李群的结构。实际上,以同构来分,其为唯一的一个同构于T的一维紧致连通李群

圆群在数学里可承现出很多种不同的类型。下面列出较常见的几种类型,并证明

由所有一阶酉矩阵(即单位复数)所组成之群显然与圆群相对应;其酉的条件即等价于其元素的模为1的条件。因此圆群会同构于第一个酉群U(1)。

纯虚数指数函数会产生一个由实数加法群R映射至圆群T上之群同态exp:R→T,其映射为

其最后一个等式为欧拉公式。实数会对应到单位圆上由正轴量起的角度。这个映射是一个同态,因为单位复数的乘法可以对应到角度的加法上:

此一指数映射很明显地是一个由R映射至T的满射函数,但它不是单射。这个映射的核为所有整数倍之集合。基于第一同构定理,会有着

调整一下尺度后,也可以说T同构于R/Z。

若将复数视为二阶实矩阵(见复数),单位复数则会对应至有单位行列式的二阶正交矩阵上。具体地说,会有如下之对应关系

圆群因此会同构于特殊正交群SO(2)。此处有着一个单位复数之乘法的几何解释,即为复平面上的旋转,并且任何旋转都可表达成这种形式。

任何大于0之维度的紧致李群都会有一个会同构于圆群的子群。这是指以对称的观点来思考,一“连续”作用的紧致对称群可以被表示成有一作用着的单参数圆子群;其在物理系统上的结果可以有如旋转不变性和自发性对称破坏等例子。

圆群有许多个子群,但其纯紧致子群只由单位根所构成。

圆群的表示是很容易描述的。舒尔引理描述说一个阿贝尔群的所有不可约复表示都是一维的。圆群是紧致的,任一表示 ρ : T G L 1 ( C ) C × {\displaystyle \rho \colon \mathbb {T} \to \mathrm {GL} _{1}(\mathbb {C} )\cong \mathbb {C} ^{\times }} ,因为表示 ρ n {\displaystyle \rho _{-n}} 次单位根所组成之集合,且会同构于Q/Z。可除群的结构定理表示T会同构于Q/Z和一串Q的直积。这一串Q的数目必须为(连续势)为了使直积的势会是正确的。但个Q的直积会同构于R,R如同是在Q上的维向量空间。因此

同构

也可以以同样的方式证明,因为C×也是其挠子群和T的挠子群相同的可除阿贝尔群。

相关

  • 多细胞多细胞生物是指由多个、分化的细胞组成的生物体,其分化的细胞各有不同的、专门的功能。大多数可以使用肉眼看到的生物是多细胞生物。 所有多细胞生物都属于真核生物。多细胞
  • 书法中国书法是汉字的书写艺术,也是东亚书法的代表。所以以文字为基准的角度看,中国书法是一种很独特的视觉艺术,但是这种独特性并不妨碍不认识中文字体的人欣赏中国书法。汉字是中
  • 字模字型或字模(英语:font;传统英式英语:fount)是指印刷行业中某一整套具有同样样式、字重和尺码的字形,例如一整套用于内文的宋体5号字、一整套用于标题的10号字就叫一套字型。电脑早
  • 神奈川冲浪里《神奈川冲浪里》是日本浮世绘画家葛饰北斋的著名木版画,于1832年出版,是《富岳三十六景》系列作品之一。它描述巨浪威胁神奈川冲(神奈川外海)的船只,与该系列的其它作品一样,以富
  • 20182018年英联邦运动会于2018年4月4日至15日于澳大利亚昆士兰州黄金海岸举行。主办城市于2011年11月11日在圣基茨岛巴斯特尔公布,这是澳大利亚第五次举办英联邦运动会。2008年8
  • 高登·摩尔高登·厄尔·摩尔(英语:Gordon Earle Moore,1929年1月3日-),英特尔公司的共同创办人之一。他最为人知的事迹,是提出摩尔定律。截至2015年1月,他的净资产为67亿美元。在2019年美国400
  • 费根鲍姆常数费根鲍姆常数是分岔理论中重要两个的数学常数,这两个常数因数学家费根鲍姆而得名。第一费根鲍姆常数是倍周期分叉(英语:Period-doubling bifurcation)中相邻分叉点间隔的极限比
  • 台湾维吾尔族台湾维吾尔族,是一个相当稀少的族群,属于外省族群。
  • 1920-21球季英格兰足总杯1920/21球季英格兰足总杯(英语:FA Cup),是第46届英格兰足总杯,今届赛事的冠军是热刺,他们在决赛以1:0击败狼队,夺得冠军。本届赛事移师史坦福桥球场举行。狼队当时并非顶级联赛球队
  • 白色猎人《Weiß kreuz》在德语里是“白色十字架”的意思,由四名成员Aya、Ken、Yohji和Omi组成,他们白天在花店打工,夜晚执行任务,将那些犯下了令人发指的罪行,却运用权势和金钱逃脱法网