正比

✍ dations ◷ 2025-06-07 20:35:14 #正比
在数学中,比例是两个非零数量 y {displaystyle y} 与 x {displaystyle x} 之间的比较关系,记为 y : x ( x , y ∈ R ) {displaystyle y:x;(x,yin mathbb {R} )} ,在计算时则更常写为 y x {displaystyle {frac {y}{x}}} 或 y / x {displaystyle y/x} 。若两个变量的关系符合其中一个量是另一个量乘以一个常数( y = k x {displaystyle y=kx} ),或等价地表达为两变数之比率为一个常数(称为比值, y / x = k {displaystyle y/x=k} ),则称两者是成比例的。如果 y {displaystyle y} 与 x {displaystyle x} 是可通约的,亦即它们之间存在一个公测量(common measure) m ( m ∈ R ) {displaystyle m;(min mathbb {R} )} 使得 y = m p , x = m q ( p , q ∈ Z ) {displaystyle y=mp,x=mq;(p,qin mathbb {Z} )} , y : x {displaystyle y:x} 就相等于两个整数的比: y : x = m p : m q = p : q {displaystyle y:x=mp:mq=p:q} ,那么 y : x {displaystyle y:x} 就称为可通约比(commensurable ratio), p q {displaystyle {frac {p}{q}}} 称为一个分数,其比值称为有理数;否则,如果不存在一个公测量, y : x {displaystyle y:x} 就称为不可通约比(incommensurable ratio),其比值称为无理数,亦即无法表达为分数的数。两个比例之间也可以互相比较。如果两个比例相等,亦即,它们的比值相同,这个相等关系称为一个等比关系,例如, y : x = u : o {displaystyle y:x=u:o} 是一个等比关系,其中 x u = y o {displaystyle xu=yo} 。特别是,如果第二项等于第三项,例如 y : x = x : z {displaystyle y:x=x:z} ,那么 x 2 = y z → x = y z {displaystyle x^{2}=yzrightarrow x={sqrt {yz}}} , x {displaystyle x} 称为 y {displaystyle y} 与 z {displaystyle z} 的几何平均数(geometric mean)。若存在一非零常数 k {displaystyle k} 使则称变量 y {displaystyle y} 与变量 x {displaystyle x} 成比例(有时也称为成正比)。当 x {displaystyle x} 和 y {displaystyle y} 成正比关系,表示当 x {displaystyle x} 变为原来 k {displaystyle k} 倍时, y {displaystyle y} 也会变为原来的 k {displaystyle k} 倍。该关系通常用 ∝ {displaystyle propto } (U+221D)表示为:并称该常数比率为比例常数或比例关系中的比例恒量。在日常生活中,正比这个词的使用并不严格局限于线性函数,一般来说,一个变量随着另一个变量的增大/缩小而相应地增大/缩小,近似地满足线性关系的时候,我们可以说这两个变量成正比。现代数学对于比例的用法并没有严格限制,例如,在一个班级里面,我们可以说:“男孩与女孩的比例是2比1”。然而,在古希腊数学中,由于比例是用来表示倍数关系,所以必须是相同种类的数量才能构成比例,例如,欧几里得在《几何原本》第五册中如此定义比例: .mw-parser-output .templatequote{margin-top:0;overflow:hidden}.mw-parser-output .templatequote .templatequotecite{line-height:1em;text-align:left;padding-left:2em;margin-top:0}.mw-parser-output .templatequote .templatequotecite cite{font-size:small}λόγος ἐστὶ δύο μεγεθῶν ὁμογενῶν ἡ κατὰ πηλικότητά ποια σχέσις.A ratio is a sort of relation in respect of size between two magnitudes of the same kind.比例是两个同类数量之间的大小关系。阿基米德使用这个定义来叙述均匀运动(uniform motion)的等比关系:在一个均匀运动中,两段距离的比例相等于它们所需时间的比例。阿基米德所要描述的,就是匀速运动,但是古希腊数学并不接受距离与时间的比例(亦即速率),因为它们是不一样的数量,所以他没有办法直接说:“均匀运动就是每一点上的速率皆相等”。当采用古希腊的比例论来叙述时,必须取两段距离 L 1 {displaystyle L_{1}} 与 L 2 {displaystyle L_{2}} 以及所需时间 T 1 {displaystyle T_{1}} 与 T 2 {displaystyle T_{2}} ,均匀运动(匀速运动)就是 L 1 : L 2 = T 1 : T 2 {displaystyle L_{1}:L_{2}=T_{1}:T_{2}} 。因为等价于因此可推出,若 y {displaystyle y} 与 x {displaystyle x} 之间存在正比关系,则 x {displaystyle x} 与 y {displaystyle y} 之间存在正比关系。y {displaystyle y} 与 x {displaystyle x} 的正比关系也可以被解读为一条在二维直角坐标系穿过原点的直线,其斜率为比例常数。比例关系中,位于两端的两数之积等于位于中间的两数之积:在上面定义中,我们说有时称两个成比例的变量成正比例,这是为了和反比例关系相对应。如果两变量中,一个变量和另外一个变量的倒数成正比,或等价地,若这两变量的乘积是一个常数,则称这两个变量是成反比例(或相反地变化)的。从而可继续推出,若存在一非零常数 k {displaystyle k} 使则变量 y {displaystyle y} 和变量 x {displaystyle x} 成反比。反比例关系的概念基本上说明的是这样一种关系,即当一个变量的值变大时,另一变量的值相应变小,而两者之积总是保持为一常数(即比例常数)。举例来说,运动中的车辆走完一段路程所花费的时间是和这辆车运动的速度成反比的;在地上挖个坑所花的时间也(大致地)和雇来挖坑的人数成反比的。在笛卡尔坐标平面上,两个具有反比例关系的变量的图形是一对双曲线。该图线上的每一点的 X 和 Y 坐标值之积总是等于比例常数 k {displaystyle k} 。由于 k {displaystyle k} 非零,所以图线不会与坐标轴相交若变量 y {displaystyle y} 与变量 x {displaystyle x} 的指数函数成正比,即:若存在非零常数 k {displaystyle k} 使则称 y {displaystyle y} 与 x {displaystyle x} 成指数比例。类似地,若变量 y {displaystyle y} 与变量 x {displaystyle x} 的对数函数成正比,即:若存在非零常数 k {displaystyle k} 使则称 y {displaystyle y} 与 x {displaystyle x} 成对数比例。用实验方法确定两个物理量是否具有正比关系,可采用这样的办法,即进行多次测量并在笛卡尔坐标系中将这些测量结果用多个点来表示,而绘制出这些点的分布图形;如果所有点完全(或接近)地落在一条穿过原点 ( 0 , 0 ) {displaystyle (0,0)} 的直线上,则这两个变量(很有可能)具有比例常数等于该直线斜率的正比关系。

相关

  • 札格拉布萨格勒布(克罗地亚语:Zagreb;德语旧称:Agram,阿格拉姆;匈牙利语:Zágráb)是克罗地亚的首都和萨格勒布县的首府同时也是全国最大城市、一个直辖市。萨格勒布克罗地亚国内足球强队萨
  • 蛲虫蛲虫(学名:Enterobius vermicularis,英文Pinworm),别名:针状虫、坐虫,线虫动物门中的一类肠道寄生虫,是蛲虫病的病因。在全世界均有其分布。成虫虫体外型有如粉红色线头,前端有三片
  • 彼得·曼斯菲尔德彼得·曼斯菲尔德爵士,FRS(英语:Sir Peter Mansfield,1933年10月9日-2017年2月8日),英国物理学家,皇家学会院士,诺汀罕大学教授。由于在核磁共振成像的研究,他与美国科学家保罗·劳特
  • 和县人和县人(学名:Homo erectus hexianensis),旧称和县猿人,学名直立人和县亚种,是在更新世中期、旧石器时代早期生活在华东地区的直立人的代表之一。1980~1981年间,安徽和县陶店镇汪家山
  • 福斯卡里宫坐标:45°26′04″N 12°19′36″E / 45.434464°N 12.326564°E / 45.434464; 12.326564福斯卡里宫(Ca' Foscari)是意大利威尼斯的一座意大利哥特式建筑,位于多尔索杜罗区的大
  • 木卫一木卫一也称为“艾奥”或“伊俄”(发音为/ˈaɪ.oʊ/, 或是希腊 Ἰώ),是木星的四颗伽利略卫星中最靠近木星的一颗卫星,直径为3,642公里,是太阳系第四大卫星。名字来自众神之王宙
  • 罗伯茨理查德·罗伯茨爵士(英语:Sir Richard John Roberts,1943年9月6日-),出生在德比,是一名英格兰生物化学家和分子生物学家。1993年,他夺得诺贝尔生理学或医学奖。他现任新英格兰生物实
  • 紫微大帝紫微大帝,全称中天紫微北极太皇大帝,道教的四御尊神之一,是斗姆元君的次子。为紫微垣的星君,道教认为,紫微垣位居苍天众星的正中,协助玉皇上帝掌控星斗、日月等,是众星之主。紫微大
  • 杉树杉木(学名:Cunninghamia lanceolata)又称福州杉、刺杉,为柏科杉木属植物。原产于中国及越南,并有一变种峦大杉,分布在台湾,模式标本采自浙江舟山。常绿乔木,高可达30米以上;树冠常呈
  • 假底物底物(英语:substrate)在生物化学领域指参与生化反应的物质,可为化学元素、分子或化合物,经酶作用可形成产物。一个生化反应的底物往往同时也是另一个化学反应的产物。