首页 >
正比
✍ dations ◷ 2025-04-04 11:19:28 #正比
在数学中,比例是两个非零数量
y
{displaystyle y}
与
x
{displaystyle x}
之间的比较关系,记为
y
:
x
(
x
,
y
∈
R
)
{displaystyle y:x;(x,yin mathbb {R} )}
,在计算时则更常写为
y
x
{displaystyle {frac {y}{x}}}
或
y
/
x
{displaystyle y/x}
。若两个变量的关系符合其中一个量是另一个量乘以一个常数(
y
=
k
x
{displaystyle y=kx}
),或等价地表达为两变数之比率为一个常数(称为比值,
y
/
x
=
k
{displaystyle y/x=k}
),则称两者是成比例的。如果
y
{displaystyle y}
与
x
{displaystyle x}
是可通约的,亦即它们之间存在一个公测量(common measure)
m
(
m
∈
R
)
{displaystyle m;(min mathbb {R} )}
使得
y
=
m
p
,
x
=
m
q
(
p
,
q
∈
Z
)
{displaystyle y=mp,x=mq;(p,qin mathbb {Z} )}
,
y
:
x
{displaystyle y:x}
就相等于两个整数的比:
y
:
x
=
m
p
:
m
q
=
p
:
q
{displaystyle y:x=mp:mq=p:q}
,那么
y
:
x
{displaystyle y:x}
就称为可通约比(commensurable ratio),
p
q
{displaystyle {frac {p}{q}}}
称为一个分数,其比值称为有理数;否则,如果不存在一个公测量,
y
:
x
{displaystyle y:x}
就称为不可通约比(incommensurable ratio),其比值称为无理数,亦即无法表达为分数的数。两个比例之间也可以互相比较。如果两个比例相等,亦即,它们的比值相同,这个相等关系称为一个等比关系,例如,
y
:
x
=
u
:
o
{displaystyle y:x=u:o}
是一个等比关系,其中
x
u
=
y
o
{displaystyle xu=yo}
。特别是,如果第二项等于第三项,例如
y
:
x
=
x
:
z
{displaystyle y:x=x:z}
,那么
x
2
=
y
z
→
x
=
y
z
{displaystyle x^{2}=yzrightarrow x={sqrt {yz}}}
,
x
{displaystyle x}
称为
y
{displaystyle y}
与
z
{displaystyle z}
的几何平均数(geometric mean)。若存在一非零常数
k
{displaystyle k}
使则称变量
y
{displaystyle y}
与变量
x
{displaystyle x}
成比例(有时也称为成正比)。当
x
{displaystyle x}
和
y
{displaystyle y}
成正比关系,表示当
x
{displaystyle x}
变为原来
k
{displaystyle k}
倍时,
y
{displaystyle y}
也会变为原来的
k
{displaystyle k}
倍。该关系通常用
∝
{displaystyle propto }
(U+221D)表示为:并称该常数比率为比例常数或比例关系中的比例恒量。在日常生活中,正比这个词的使用并不严格局限于线性函数,一般来说,一个变量随着另一个变量的增大/缩小而相应地增大/缩小,近似地满足线性关系的时候,我们可以说这两个变量成正比。现代数学对于比例的用法并没有严格限制,例如,在一个班级里面,我们可以说:“男孩与女孩的比例是2比1”。然而,在古希腊数学中,由于比例是用来表示倍数关系,所以必须是相同种类的数量才能构成比例,例如,欧几里得在《几何原本》第五册中如此定义比例:
.mw-parser-output .templatequote{margin-top:0;overflow:hidden}.mw-parser-output .templatequote .templatequotecite{line-height:1em;text-align:left;padding-left:2em;margin-top:0}.mw-parser-output .templatequote .templatequotecite cite{font-size:small}λόγος ἐστὶ δύο μεγεθῶν ὁμογενῶν ἡ κατὰ πηλικότητά ποια σχέσις.A ratio is a sort of relation in respect of size between two magnitudes of the same kind.比例是两个同类数量之间的大小关系。阿基米德使用这个定义来叙述均匀运动(uniform motion)的等比关系:在一个均匀运动中,两段距离的比例相等于它们所需时间的比例。阿基米德所要描述的,就是匀速运动,但是古希腊数学并不接受距离与时间的比例(亦即速率),因为它们是不一样的数量,所以他没有办法直接说:“均匀运动就是每一点上的速率皆相等”。当采用古希腊的比例论来叙述时,必须取两段距离
L
1
{displaystyle L_{1}}
与
L
2
{displaystyle L_{2}}
以及所需时间
T
1
{displaystyle T_{1}}
与
T
2
{displaystyle T_{2}}
,均匀运动(匀速运动)就是
L
1
:
L
2
=
T
1
:
T
2
{displaystyle L_{1}:L_{2}=T_{1}:T_{2}}
。因为等价于因此可推出,若
y
{displaystyle y}
与
x
{displaystyle x}
之间存在正比关系,则
x
{displaystyle x}
与
y
{displaystyle y}
之间存在正比关系。y
{displaystyle y}
与
x
{displaystyle x}
的正比关系也可以被解读为一条在二维直角坐标系穿过原点的直线,其斜率为比例常数。比例关系中,位于两端的两数之积等于位于中间的两数之积:在上面定义中,我们说有时称两个成比例的变量成正比例,这是为了和反比例关系相对应。如果两变量中,一个变量和另外一个变量的倒数成正比,或等价地,若这两变量的乘积是一个常数,则称这两个变量是成反比例(或相反地变化)的。从而可继续推出,若存在一非零常数
k
{displaystyle k}
使则变量
y
{displaystyle y}
和变量
x
{displaystyle x}
成反比。反比例关系的概念基本上说明的是这样一种关系,即当一个变量的值变大时,另一变量的值相应变小,而两者之积总是保持为一常数(即比例常数)。举例来说,运动中的车辆走完一段路程所花费的时间是和这辆车运动的速度成反比的;在地上挖个坑所花的时间也(大致地)和雇来挖坑的人数成反比的。在笛卡尔坐标平面上,两个具有反比例关系的变量的图形是一对双曲线。该图线上的每一点的 X 和 Y 坐标值之积总是等于比例常数
k
{displaystyle k}
。由于
k
{displaystyle k}
非零,所以图线不会与坐标轴相交若变量
y
{displaystyle y}
与变量
x
{displaystyle x}
的指数函数成正比,即:若存在非零常数
k
{displaystyle k}
使则称
y
{displaystyle y}
与
x
{displaystyle x}
成指数比例。类似地,若变量
y
{displaystyle y}
与变量
x
{displaystyle x}
的对数函数成正比,即:若存在非零常数
k
{displaystyle k}
使则称
y
{displaystyle y}
与
x
{displaystyle x}
成对数比例。用实验方法确定两个物理量是否具有正比关系,可采用这样的办法,即进行多次测量并在笛卡尔坐标系中将这些测量结果用多个点来表示,而绘制出这些点的分布图形;如果所有点完全(或接近)地落在一条穿过原点
(
0
,
0
)
{displaystyle (0,0)}
的直线上,则这两个变量(很有可能)具有比例常数等于该直线斜率的正比关系。
相关
- 氢气氢气是氢元素标准状况下以气态形式存在的物质,化学式为H2,由两个氢原子构成,又称分子氢。氢气是最轻的气体,可用于热气球中,但后来因其浮力而使用的氢气被逐渐替换为危险性较小的
- 卡洛林王朝加洛林王朝(法语:les Carolingiens,旧称Carlovingiens,中世纪拉丁语:Karolingi,又译卡洛林王朝)是自公元751年后统治法兰克王国的王朝。在此之前,其王朝成员以“宫相”的身份涉理王
- 威廉·蒂莫西·高尔斯威廉·蒂莫西·高尔斯爵士,KBE,FRS(英语:Sir William Timothy Gowers,1963年11月20日-),英国数学家、作家,1998年菲尔兹奖得主。高尔斯早年受教于英格兰剑桥郡的国王学院(英语:King's C
- 夜尿症夜尿症(由拉丁文nox, night,和希腊文 ούρα, urine)演变而来,它指夜晚需要起床排尿,因此打断了睡眠。在孕妇和老年人身上比较多见。夜尿症可能仅仅是因为睡前饮用了过多液体
- 元语言广义来说,元语言是指讨论或研究语言本身时所使用的语言或符号。在逻辑和语言学里,元语言是用来对其他语言(对象语言(英语:Object language))的句子形成另一个句子的语言。元语言通
- 克非尔克非尔(英语:kephir 或 Kefir,也译为克菲尔、开菲尔),又称为牛奶酒、咸酸 奶,是一种发源于高加索的发酵牛奶饮料。这种饮料是通过在牛奶或羊奶上接种上一批的克非尔粒-或称为克非
- 东亚传统东亚传统度量衡,通称度量衡,指源于中国,广泛应用于东亚各国的传统计量体系。日本多称为尺贯法,也称尺间法,其中“尺”为东亚通用的长度单位,“贯”在日本为质量单位,“间”为日本长
- 纽约大都会纽约大都会(New York Mets)是一支在纽约州纽约的美国职棒大联盟球队,隶属国家联盟东区。 他们赢过两次世界大赛冠军,第一次是在1969年,第二次则是1986年。1959年7月27日,纽约律师
- 西河郡西河郡,中国古郡名。汉武帝元朔四年(前125年),分上郡北部置西河郡。治所在平定县(县治在今内蒙古鄂尔多斯东南),属朔方刺史部。领三十六县:富昌、驺虞、鹄泽、平定、美稷、中阳、乐
- 梵蒂冈教廷图书馆梵蒂冈宗座图书馆(拉丁语:Bibliotheca Apostolica Vaticana)是圣座的官方图书馆,一般简称为梵蒂冈图书馆。它于1475年建立,位于梵蒂冈城的梵蒂冈博物馆旁。其为世界上手抄本收藏