正比

✍ dations ◷ 2025-10-21 14:24:13 #正比
在数学中,比例是两个非零数量 y {displaystyle y} 与 x {displaystyle x} 之间的比较关系,记为 y : x ( x , y ∈ R ) {displaystyle y:x;(x,yin mathbb {R} )} ,在计算时则更常写为 y x {displaystyle {frac {y}{x}}} 或 y / x {displaystyle y/x} 。若两个变量的关系符合其中一个量是另一个量乘以一个常数( y = k x {displaystyle y=kx} ),或等价地表达为两变数之比率为一个常数(称为比值, y / x = k {displaystyle y/x=k} ),则称两者是成比例的。如果 y {displaystyle y} 与 x {displaystyle x} 是可通约的,亦即它们之间存在一个公测量(common measure) m ( m ∈ R ) {displaystyle m;(min mathbb {R} )} 使得 y = m p , x = m q ( p , q ∈ Z ) {displaystyle y=mp,x=mq;(p,qin mathbb {Z} )} , y : x {displaystyle y:x} 就相等于两个整数的比: y : x = m p : m q = p : q {displaystyle y:x=mp:mq=p:q} ,那么 y : x {displaystyle y:x} 就称为可通约比(commensurable ratio), p q {displaystyle {frac {p}{q}}} 称为一个分数,其比值称为有理数;否则,如果不存在一个公测量, y : x {displaystyle y:x} 就称为不可通约比(incommensurable ratio),其比值称为无理数,亦即无法表达为分数的数。两个比例之间也可以互相比较。如果两个比例相等,亦即,它们的比值相同,这个相等关系称为一个等比关系,例如, y : x = u : o {displaystyle y:x=u:o} 是一个等比关系,其中 x u = y o {displaystyle xu=yo} 。特别是,如果第二项等于第三项,例如 y : x = x : z {displaystyle y:x=x:z} ,那么 x 2 = y z → x = y z {displaystyle x^{2}=yzrightarrow x={sqrt {yz}}} , x {displaystyle x} 称为 y {displaystyle y} 与 z {displaystyle z} 的几何平均数(geometric mean)。若存在一非零常数 k {displaystyle k} 使则称变量 y {displaystyle y} 与变量 x {displaystyle x} 成比例(有时也称为成正比)。当 x {displaystyle x} 和 y {displaystyle y} 成正比关系,表示当 x {displaystyle x} 变为原来 k {displaystyle k} 倍时, y {displaystyle y} 也会变为原来的 k {displaystyle k} 倍。该关系通常用 ∝ {displaystyle propto } (U+221D)表示为:并称该常数比率为比例常数或比例关系中的比例恒量。在日常生活中,正比这个词的使用并不严格局限于线性函数,一般来说,一个变量随着另一个变量的增大/缩小而相应地增大/缩小,近似地满足线性关系的时候,我们可以说这两个变量成正比。现代数学对于比例的用法并没有严格限制,例如,在一个班级里面,我们可以说:“男孩与女孩的比例是2比1”。然而,在古希腊数学中,由于比例是用来表示倍数关系,所以必须是相同种类的数量才能构成比例,例如,欧几里得在《几何原本》第五册中如此定义比例: .mw-parser-output .templatequote{margin-top:0;overflow:hidden}.mw-parser-output .templatequote .templatequotecite{line-height:1em;text-align:left;padding-left:2em;margin-top:0}.mw-parser-output .templatequote .templatequotecite cite{font-size:small}λόγος ἐστὶ δύο μεγεθῶν ὁμογενῶν ἡ κατὰ πηλικότητά ποια σχέσις.A ratio is a sort of relation in respect of size between two magnitudes of the same kind.比例是两个同类数量之间的大小关系。阿基米德使用这个定义来叙述均匀运动(uniform motion)的等比关系:在一个均匀运动中,两段距离的比例相等于它们所需时间的比例。阿基米德所要描述的,就是匀速运动,但是古希腊数学并不接受距离与时间的比例(亦即速率),因为它们是不一样的数量,所以他没有办法直接说:“均匀运动就是每一点上的速率皆相等”。当采用古希腊的比例论来叙述时,必须取两段距离 L 1 {displaystyle L_{1}} 与 L 2 {displaystyle L_{2}} 以及所需时间 T 1 {displaystyle T_{1}} 与 T 2 {displaystyle T_{2}} ,均匀运动(匀速运动)就是 L 1 : L 2 = T 1 : T 2 {displaystyle L_{1}:L_{2}=T_{1}:T_{2}} 。因为等价于因此可推出,若 y {displaystyle y} 与 x {displaystyle x} 之间存在正比关系,则 x {displaystyle x} 与 y {displaystyle y} 之间存在正比关系。y {displaystyle y} 与 x {displaystyle x} 的正比关系也可以被解读为一条在二维直角坐标系穿过原点的直线,其斜率为比例常数。比例关系中,位于两端的两数之积等于位于中间的两数之积:在上面定义中,我们说有时称两个成比例的变量成正比例,这是为了和反比例关系相对应。如果两变量中,一个变量和另外一个变量的倒数成正比,或等价地,若这两变量的乘积是一个常数,则称这两个变量是成反比例(或相反地变化)的。从而可继续推出,若存在一非零常数 k {displaystyle k} 使则变量 y {displaystyle y} 和变量 x {displaystyle x} 成反比。反比例关系的概念基本上说明的是这样一种关系,即当一个变量的值变大时,另一变量的值相应变小,而两者之积总是保持为一常数(即比例常数)。举例来说,运动中的车辆走完一段路程所花费的时间是和这辆车运动的速度成反比的;在地上挖个坑所花的时间也(大致地)和雇来挖坑的人数成反比的。在笛卡尔坐标平面上,两个具有反比例关系的变量的图形是一对双曲线。该图线上的每一点的 X 和 Y 坐标值之积总是等于比例常数 k {displaystyle k} 。由于 k {displaystyle k} 非零,所以图线不会与坐标轴相交若变量 y {displaystyle y} 与变量 x {displaystyle x} 的指数函数成正比,即:若存在非零常数 k {displaystyle k} 使则称 y {displaystyle y} 与 x {displaystyle x} 成指数比例。类似地,若变量 y {displaystyle y} 与变量 x {displaystyle x} 的对数函数成正比,即:若存在非零常数 k {displaystyle k} 使则称 y {displaystyle y} 与 x {displaystyle x} 成对数比例。用实验方法确定两个物理量是否具有正比关系,可采用这样的办法,即进行多次测量并在笛卡尔坐标系中将这些测量结果用多个点来表示,而绘制出这些点的分布图形;如果所有点完全(或接近)地落在一条穿过原点 ( 0 , 0 ) {displaystyle (0,0)} 的直线上,则这两个变量(很有可能)具有比例常数等于该直线斜率的正比关系。

相关

  • 淋巴管平滑肌增生淋巴管平滑肌增生(英文:Lymphangioleiomyomatosis,通称:LAM),或称淋巴管平滑肌瘤、肺淋巴管肌瘤,是一种罕见、进行性、系统性疾病,通常发展为囊肿导致的肺功能丧失。LAM主要影响女性
  • S02BA·B·C·D·G·H·QI·J·L·M·N·P·R·S·VATC代码S02(耳科用药)是解剖学治疗学及化学分类系统的一个药物分组,这是由世界卫生组织药物统计方法整合中心(The WHO Collaborat
  • 酶工程酶工程(英语:Enzyme engineering)又可以说是蛋白质工程学,利用传统突变技术或是分子生物学技术,将蛋白质上的氨基酸进行突变,已改变蛋白质之化学性质和功能。例如:在酵素的应用上,
  • 粉笔粉笔是日常生活中广为使用的文具,一般用于书写在黑板上。粉笔一般呈长型圆柱体,颜色包括白色和多种彩色。粉笔最早的记录是在中世纪时,人们开始发现用石灰加水,可以做成块状的物
  • 沙贾汗沙贾汉(乌尔都语:شاه جهان‎‎;印地语:शाह जहाँ;英语:Shah Jahan;波斯语:شاه جهان‎;1592年1月5日-1666年1月22日),或称夏吉汗、沙迦罕,是统治印度次大陆的莫卧儿帝
  • 卢卡帕坐标:8°25′S 20°45′E / 8.417°S 20.750°E / -8.417; 20.750卢卡帕为于安哥拉东部,亦为北伦达省的首府,其人口数由于内战所导致人民迁移而难以估计。城市中主要产业为矿业
  • 淡水湖淡水湖是指以淡水形式积存在地表上的湖泊,有封闭式和开放式两种。封闭式的淡水湖大多位于高山或相当内陆区域,没有明显的河川流入和流出。开放式的则可能相当大,湖中有岛屿,并有
  • 沃尔特·格罗佩斯Peter Behrens (1908–1910)法古斯工厂 工艺联盟展览(英语:Werkbund Exhibition (1914)) 包豪斯 格罗皮厄斯屋(英语:Gropius House) 巴格达大学(英语:University of Baghdad) 约翰·
  • 抑制蛋白酶蛋白酶抑制剂(英语:Protease inhibitor)是带有环状结构的肽化合物,可竞争性或非竞争性抑制蛋白酶活性,此外,蛋白酶抑制剂还可以降低白介素-1β转换酶的表达,从而使病毒颗粒无法成熟,
  • 温带大陆性气候温带大陆性气候是温带地区最冷月均温小于0ºC,降水较少的一种气候。可细分为温带大陆性湿润气候和温带干旱半干旱气候。