✍ dations ◷ 2025-04-04 11:27:09 #≡
↔⇔≡当且仅当的逻辑符号当且仅当(英语:if and only if,iff),在数字逻辑中,逻辑算符反异或闸(exclusive or)是对两个运算元的一种逻辑分析类型,符号为XNOR或ENOR或 ⇔ {displaystyle Leftrightarrow } 。与一般的逻辑或非NOR不同,当两两数值相同为是,而数值不同时为否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在这个条件成立,并且仅在这个条件成立时”之意。当命题 p , q {displaystyle p,q} 满足“当 p {displaystyle p} 则 q {displaystyle q} ”且“仅当 p {displaystyle p} 则 q {displaystyle q} ”时,称为“当且仅当 p {displaystyle p} 则 q {displaystyle q} ”,其他等价的说法有“ q {displaystyle q} 当且仅当 p {displaystyle p} ”;“ p {displaystyle p} 是 q {displaystyle q} 的充分必要条件(充要条件)”;“ p {displaystyle p} 等价于 q {displaystyle q} ”。一般而言,当我们看到“当且仅当 p {displaystyle p} 则 q {displaystyle q} ”,我们可以知道“如果 p {displaystyle p} 成立时,则 q {displaystyle q} 一定成立;如果 q {displaystyle q} 成立时,则 p {displaystyle p} 也一定成立”;“如果 p {displaystyle p} 不成立时,则 q {displaystyle q} 一定不成立;如果 q {displaystyle q} 不成立时,则 p {displaystyle p} 也一定不成立”。与此相对应的逻辑符号是 ↔ {displaystyle leftrightarrow } 和 ⇔ {displaystyle Leftrightarrow } 。这两个通常被当作是相等的。但是,一些数学教科书,特别是那些关于一阶逻辑而非命题逻辑对此有所区别,在那里前者被用来表示逻辑公式,后者表示那些公式的推理(譬如说在元逻辑中)。设 p {displaystyle p} 与 q {displaystyle q} 为两命题,在证明“当且仅当 p {displaystyle p} 则 q {displaystyle q} ”时,这相当于去同时证明陈述“如果 p {displaystyle p} 成立,则 q {displaystyle q} 成立”和“如果 q {displaystyle q} 成立,则 p {displaystyle p} 成立”。另外,也可以证明“如果 p {displaystyle p} 成立,则 q {displaystyle q} 成立”和“如果 p {displaystyle p} 不成立,则 q {displaystyle q} 不成立”,后者作为对偶,等价于“如果 q {displaystyle q} 成立,则 p {displaystyle p} 成立”。在出版物中,英语iff的表示标记最早出现在约翰·L·凯利的《一般拓扑学》中。它的发明通常被认为是归于数学家保罗·哈尔莫斯,但在哈尔莫斯的自传中却声明该标记另有出处,他只是首先在数学领域使用。简单地,如下的两个例子可以说明这两者的不同:第1句指小王一定会吃香草口味的冰淇淋,但没有排除他会吃香草口味以外冰淇淋的可能性,能肯定的是他不会拒绝香草口味的冰淇淋。第2句指小王一定吃且只吃香草口味的冰淇淋,他不会吃其它口味的冰淇淋。用“当且仅当”连接两个句子造成的句子被称为是“双条件句”。“当且仅当”把两个句子结合成新的句子。它不应该跟描述两个句子之间关系的“逻辑等价”混淆。双条件句“当且仅当 p {displaystyle p} 则 q {displaystyle q} ”,是用 p {displaystyle p} 和 q {displaystyle q} 来陈述 p {displaystyle p} 和 q {displaystyle q} 所描述的事件状况之间的关系。相对照的,“ p {displaystyle p} 逻辑等价于 q {displaystyle q} ”则注重两个句子:它只是陈述两个句子之间的关系,而不是它们所介绍的什么事情。这里的区别非常容易混淆,已经使得很多哲学家迷惑。当然,在“ p {displaystyle p} 逻辑等价于 q {displaystyle q} ”时,“当且仅当 p {displaystyle p} 则 q {displaystyle q} ”为真,但是它的逆并不成立。让我们重新考虑上面的句子:很清楚,对于这个特定的双条件句,两个半句之间并没有逻辑等价。如想了解更多的差异,请参照W. V. Quine的《数理逻辑,第5节》。在哲学和逻辑学中,“当且仅当”通常用作定义,因为定义被认为是全称量化的双条件句。但在数学中,相比起“当且仅当”,如果通常被用于定义。这里给出一些使用到“当且仅当的”真陈述,也是真双条件句(第一句是一个定义的例子):“当且仅当”在逻辑领域以外,在数学出版物或者普通的谈话中也会用到。如同上面所说,它指的是某个陈述是另外一个的充分必要条件。这是一个数学术语的例子。

相关

  • 蛔虫蛔虫(学名:Ascaris lumbricoides)中文全名为似蚓蛔线虫,是一种常见的肠道寄生虫,也作“蚘虫”,属于线虫动物门,最长可达35 cm。蛔虫会导蛔虫病,属于被轻忽的热带疾病(英语:neglected
  • 科(英文: family, 拉丁语:familia)是生物分类法中的一级,位于目和属之间,现时生物界约有800个科,科下也分亚科,而在其上亦有总科。亚科是生物分类法的一级,在科和属之间,有时亚科和属
  • 粘杆菌素粘杆菌素(Colistin),又名克痢霉素、多粘菌素E,是一种多粘菌素类多肽抗生素,是两种环状多肽——粘杆菌素A和B的混合物。可由多粘芽肥杆菌变种粘菌素(Bacillus polymyxa var. colist
  • 沙特阿拉伯沙特阿拉伯(阿拉伯语:العربية السعودية‎),或译沙乌地阿拉伯、沙地阿拉伯,全称沙特阿拉伯王国(阿拉伯语:المملكة العربية السعودية‎,al-Maml
  • Legionella pneumophila嗜肺军团菌是一种有鞭毛,革兰氏阴性,军团菌属多形态性的短小球杆菌。嗜肺军团菌是一种原发的人类病原体,会引发军团病。嗜肺军团菌不抗酸,无孢子,无荚膜,类似于杆菌。不能分解明胶
  • 蒽环类药物蒽环类药物(英语:Anthracyclines)或蒽环类抗生素(英语:Anthracycline antibiotics)是一类来源于波赛链霉菌青灰变种(Streptomyces peucetius var. caesius)的化疗药物。 它们能够治
  • 锌中毒锌中毒(英语:zinc poisoning)是指人类因食饮时不注意使身体内含锌量过多而导致的中毒。多半是由于经常使用镀锌的器皿来盛放食饮品而使得器皿中的锌溶入食饮中。如果清凉的饮料
  • UTC-4UTC−04:00时区比协调世界时慢4小时,使用于地区如下:
  • 格拉纳达参数所指定的目标页面不存在,建议更正成存在页面或直接建立下列一个页面(建立前请先搜寻是否有合适的存在页面可以取代):注意如果条目名称是繁体字要使用繁体的“消歧義”,简体字
  • 异体字表《异体字表》(variant character table)是中华民国教育部编制之异体字字表,位列《常用国字标准字体表》、《次常用国字标准字体表》和《罕用字体表》之后,简称“丁表”。最新