首页 >
≡
✍ dations ◷ 2025-09-11 12:20:34 #≡
↔⇔≡当且仅当的逻辑符号当且仅当(英语:if and only if,iff),在数字逻辑中,逻辑算符反异或闸(exclusive or)是对两个运算元的一种逻辑分析类型,符号为XNOR或ENOR或
⇔
{displaystyle Leftrightarrow }
。与一般的逻辑或非NOR不同,当两两数值相同为是,而数值不同时为否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在这个条件成立,并且仅在这个条件成立时”之意。当命题
p
,
q
{displaystyle p,q}
满足“当
p
{displaystyle p}
则
q
{displaystyle q}
”且“仅当
p
{displaystyle p}
则
q
{displaystyle q}
”时,称为“当且仅当
p
{displaystyle p}
则
q
{displaystyle q}
”,其他等价的说法有“
q
{displaystyle q}
当且仅当
p
{displaystyle p}
”;“
p
{displaystyle p}
是
q
{displaystyle q}
的充分必要条件(充要条件)”;“
p
{displaystyle p}
等价于
q
{displaystyle q}
”。一般而言,当我们看到“当且仅当
p
{displaystyle p}
则
q
{displaystyle q}
”,我们可以知道“如果
p
{displaystyle p}
成立时,则
q
{displaystyle q}
一定成立;如果
q
{displaystyle q}
成立时,则
p
{displaystyle p}
也一定成立”;“如果
p
{displaystyle p}
不成立时,则
q
{displaystyle q}
一定不成立;如果
q
{displaystyle q}
不成立时,则
p
{displaystyle p}
也一定不成立”。与此相对应的逻辑符号是
↔
{displaystyle leftrightarrow }
和
⇔
{displaystyle Leftrightarrow }
。这两个通常被当作是相等的。但是,一些数学教科书,特别是那些关于一阶逻辑而非命题逻辑对此有所区别,在那里前者被用来表示逻辑公式,后者表示那些公式的推理(譬如说在元逻辑中)。设
p
{displaystyle p}
与
q
{displaystyle q}
为两命题,在证明“当且仅当
p
{displaystyle p}
则
q
{displaystyle q}
”时,这相当于去同时证明陈述“如果
p
{displaystyle p}
成立,则
q
{displaystyle q}
成立”和“如果
q
{displaystyle q}
成立,则
p
{displaystyle p}
成立”。另外,也可以证明“如果
p
{displaystyle p}
成立,则
q
{displaystyle q}
成立”和“如果
p
{displaystyle p}
不成立,则
q
{displaystyle q}
不成立”,后者作为对偶,等价于“如果
q
{displaystyle q}
成立,则
p
{displaystyle p}
成立”。在出版物中,英语iff的表示标记最早出现在约翰·L·凯利的《一般拓扑学》中。它的发明通常被认为是归于数学家保罗·哈尔莫斯,但在哈尔莫斯的自传中却声明该标记另有出处,他只是首先在数学领域使用。简单地,如下的两个例子可以说明这两者的不同:第1句指小王一定会吃香草口味的冰淇淋,但没有排除他会吃香草口味以外冰淇淋的可能性,能肯定的是他不会拒绝香草口味的冰淇淋。第2句指小王一定吃且只吃香草口味的冰淇淋,他不会吃其它口味的冰淇淋。用“当且仅当”连接两个句子造成的句子被称为是“双条件句”。“当且仅当”把两个句子结合成新的句子。它不应该跟描述两个句子之间关系的“逻辑等价”混淆。双条件句“当且仅当
p
{displaystyle p}
则
q
{displaystyle q}
”,是用
p
{displaystyle p}
和
q
{displaystyle q}
来陈述
p
{displaystyle p}
和
q
{displaystyle q}
所描述的事件状况之间的关系。相对照的,“
p
{displaystyle p}
逻辑等价于
q
{displaystyle q}
”则注重两个句子:它只是陈述两个句子之间的关系,而不是它们所介绍的什么事情。这里的区别非常容易混淆,已经使得很多哲学家迷惑。当然,在“
p
{displaystyle p}
逻辑等价于
q
{displaystyle q}
”时,“当且仅当
p
{displaystyle p}
则
q
{displaystyle q}
”为真,但是它的逆并不成立。让我们重新考虑上面的句子:很清楚,对于这个特定的双条件句,两个半句之间并没有逻辑等价。如想了解更多的差异,请参照W. V. Quine的《数理逻辑,第5节》。在哲学和逻辑学中,“当且仅当”通常用作定义,因为定义被认为是全称量化的双条件句。但在数学中,相比起“当且仅当”,如果通常被用于定义。这里给出一些使用到“当且仅当的”真陈述,也是真双条件句(第一句是一个定义的例子):“当且仅当”在逻辑领域以外,在数学出版物或者普通的谈话中也会用到。如同上面所说,它指的是某个陈述是另外一个的充分必要条件。这是一个数学术语的例子。
相关
- 绿菌门绿菌门是一类进行不产氧光合作用的细菌。这类细菌没有已知的近亲,最近的类群为拟杆菌门。绿菌门通常不活动(一个种具有鞭毛),形状为球状、杆状或者螺旋状。其生存要求无氧环境和
- 黑僵菌黑僵菌(学名:Metarhizium anisopliae,基名(英语:Basionym):Entomophthora anisopliae)是一种广泛分布于全世界土壤中,且可以在昆虫造成疾病的真菌(虫生真菌(英语:entomopathogenic fungi
- 新城病病毒新城病(英文:Newcastle disease)是一种禽鸟传染病,由新城病病毒引致。此病毒在禽鸟间有很高的传染性和死亡率,现时没有治疗方法,但可以透过疫苗和消毒措施以减少其爆发之可能性。
- 鸽子共有30-35种。Aplopelia Bonaparte, 1855鸽属(学名:Columba),是鸠鸽科的一属,此属的鸟类称作鸽、鸽子、粉鸟,包括各种中型和大型的鸽子,其中有我们今天常见的鸽子,即原鸽。鸽属中包
- 商业关键伙伴关系 · 关键活动 · 关键资源 价值主张 · 顾客关系 · 行销通路 顾客区隔商业(Commerce),是一种有组织的提供顾客所需的商品与服务的一种行为。中文之“商业”
- 硅酸硅酸是一类具有n通式的化合物,可以由可溶性硅酸盐与酸反应制取。简单的硅酸如偏硅酸H2SiO3、二硅酸H2Si2O5和原硅酸H4SiO4等已经在稀溶液中检测出;偏硅酸只能在0℃左右存在,室
- 悬浊液在化学中,悬浊液(英语:Suspension)也称为“悬浮液”或“悬胶”,是指含有大到可以沉降的固体颗粒的非均相流体。在药剂学中混悬剂是指难溶性固体药物以微粒状态分散于分散介质中形
- 虹膜炎虹膜炎(Iritis)是一种形式的前葡萄膜炎,指的是发炎的虹膜的眼睛,通常会急性发作,大部分会在6至8周内复元,发作时通常眼睛会红、痛,以及视力模糊。发病时通常只发生在一眼。主要有两
- 同工同酬同工同酬是指用人单位对于技术和劳动熟练程度相同的劳动者在从事同种工作时,不分性别、年龄、民族、区域等差别,只要提供相同的劳动量,就获得相同的劳动报酬。冰岛的男女公务员
- 短语短语(英语:phrase),又称词组、片语,是指一个或多个词组成的,具有中心词的语法性质,内部成分在语义和句法上都能搭配,但可能未形成完整命题,也没有语调的一种语法单位。通常一个短语可