首页 >
≡
✍ dations ◷ 2025-06-07 03:12:10 #≡
↔⇔≡当且仅当的逻辑符号当且仅当(英语:if and only if,iff),在数字逻辑中,逻辑算符反异或闸(exclusive or)是对两个运算元的一种逻辑分析类型,符号为XNOR或ENOR或
⇔
{displaystyle Leftrightarrow }
。与一般的逻辑或非NOR不同,当两两数值相同为是,而数值不同时为否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在这个条件成立,并且仅在这个条件成立时”之意。当命题
p
,
q
{displaystyle p,q}
满足“当
p
{displaystyle p}
则
q
{displaystyle q}
”且“仅当
p
{displaystyle p}
则
q
{displaystyle q}
”时,称为“当且仅当
p
{displaystyle p}
则
q
{displaystyle q}
”,其他等价的说法有“
q
{displaystyle q}
当且仅当
p
{displaystyle p}
”;“
p
{displaystyle p}
是
q
{displaystyle q}
的充分必要条件(充要条件)”;“
p
{displaystyle p}
等价于
q
{displaystyle q}
”。一般而言,当我们看到“当且仅当
p
{displaystyle p}
则
q
{displaystyle q}
”,我们可以知道“如果
p
{displaystyle p}
成立时,则
q
{displaystyle q}
一定成立;如果
q
{displaystyle q}
成立时,则
p
{displaystyle p}
也一定成立”;“如果
p
{displaystyle p}
不成立时,则
q
{displaystyle q}
一定不成立;如果
q
{displaystyle q}
不成立时,则
p
{displaystyle p}
也一定不成立”。与此相对应的逻辑符号是
↔
{displaystyle leftrightarrow }
和
⇔
{displaystyle Leftrightarrow }
。这两个通常被当作是相等的。但是,一些数学教科书,特别是那些关于一阶逻辑而非命题逻辑对此有所区别,在那里前者被用来表示逻辑公式,后者表示那些公式的推理(譬如说在元逻辑中)。设
p
{displaystyle p}
与
q
{displaystyle q}
为两命题,在证明“当且仅当
p
{displaystyle p}
则
q
{displaystyle q}
”时,这相当于去同时证明陈述“如果
p
{displaystyle p}
成立,则
q
{displaystyle q}
成立”和“如果
q
{displaystyle q}
成立,则
p
{displaystyle p}
成立”。另外,也可以证明“如果
p
{displaystyle p}
成立,则
q
{displaystyle q}
成立”和“如果
p
{displaystyle p}
不成立,则
q
{displaystyle q}
不成立”,后者作为对偶,等价于“如果
q
{displaystyle q}
成立,则
p
{displaystyle p}
成立”。在出版物中,英语iff的表示标记最早出现在约翰·L·凯利的《一般拓扑学》中。它的发明通常被认为是归于数学家保罗·哈尔莫斯,但在哈尔莫斯的自传中却声明该标记另有出处,他只是首先在数学领域使用。简单地,如下的两个例子可以说明这两者的不同:第1句指小王一定会吃香草口味的冰淇淋,但没有排除他会吃香草口味以外冰淇淋的可能性,能肯定的是他不会拒绝香草口味的冰淇淋。第2句指小王一定吃且只吃香草口味的冰淇淋,他不会吃其它口味的冰淇淋。用“当且仅当”连接两个句子造成的句子被称为是“双条件句”。“当且仅当”把两个句子结合成新的句子。它不应该跟描述两个句子之间关系的“逻辑等价”混淆。双条件句“当且仅当
p
{displaystyle p}
则
q
{displaystyle q}
”,是用
p
{displaystyle p}
和
q
{displaystyle q}
来陈述
p
{displaystyle p}
和
q
{displaystyle q}
所描述的事件状况之间的关系。相对照的,“
p
{displaystyle p}
逻辑等价于
q
{displaystyle q}
”则注重两个句子:它只是陈述两个句子之间的关系,而不是它们所介绍的什么事情。这里的区别非常容易混淆,已经使得很多哲学家迷惑。当然,在“
p
{displaystyle p}
逻辑等价于
q
{displaystyle q}
”时,“当且仅当
p
{displaystyle p}
则
q
{displaystyle q}
”为真,但是它的逆并不成立。让我们重新考虑上面的句子:很清楚,对于这个特定的双条件句,两个半句之间并没有逻辑等价。如想了解更多的差异,请参照W. V. Quine的《数理逻辑,第5节》。在哲学和逻辑学中,“当且仅当”通常用作定义,因为定义被认为是全称量化的双条件句。但在数学中,相比起“当且仅当”,如果通常被用于定义。这里给出一些使用到“当且仅当的”真陈述,也是真双条件句(第一句是一个定义的例子):“当且仅当”在逻辑领域以外,在数学出版物或者普通的谈话中也会用到。如同上面所说,它指的是某个陈述是另外一个的充分必要条件。这是一个数学术语的例子。
相关
- 人类自愿灭绝运动人类自愿灭绝运动(英语:Voluntary Human Extinction Movement,简称VHEMT)是一场号召所有人放弃生育,逐步实现自愿性人类灭绝的环保运动。运动的支持者认为人类灭绝可以防止环境恶
- 非维管植物维管植物 Tracheophyta非维管植物(或作非维管束植物)是对没有维管(木质部和韧皮部)的植物(包括绿藻)的总称。虽然非维管植物缺乏此类特殊的组织,但一部分的非维管植物会有特化来在
- 嗜热链球菌Streptococcus salivarius subsp. thermophilus (Orla-Jensen, 1919) Farrow et Collins 1984嗜热链球菌(拉丁学名 Streptococcus thermophilus)为革兰氏阳性细菌,同型发酵(homo
- 晶体结构晶体结构是指晶体的周期性结构。固体材料可以分为晶体、准晶体和非晶体三大类,其中,晶体内部原子的排列具有周期性,外部具有规则外形,比如钻石(图)。Hauy最早提出晶体的规则外型是
- BIBSYSBIBSYS是由挪威教育与研究部设立和组织的一个行政机构。它是一家服务提供商,专注于交流、存储和提供与图书馆资源相关的历史性元数据的检索。
- 性关系障碍性关系障碍(英语:Sexual relationship disorder)是指由于性别认同或性取向而难以建立或维持性关系的一种障碍。世界卫生组织在“与性发育和性取向相关的心理和行为障碍(英语:Psyc
- 斜视斜视是眼睛的一种不正常状况,也有斗鸡眼、脱窗眼等俗称,斜视是指当双眼目视某个物体时,双眼无法准确地直视该物体,但单眼可以控制聚焦于某物体上。这种症状可能是偶一为之也可能
- May-Thurner综合征May-Thurner综合征,即髂静脉压迫综合征(iliac venous compression syndrome ,IVCS)或Cockett综合征,是髂静脉受压引起的下肢静脉回流障碍而出现综合征。May-Thurner综合征在临床
- 纳-德内语系纳-德内语系(英语:Na-Dené languages),或作纳-得内语系、纳-达内语系或纳-德内诸语言,都是指北美洲原住民的一个建议中的语系,主要分布于加拿大西南部(包括西北地区、育空地区及其邻
- 词形词形(英文word form)泛指词语的书写形式,是书面语言的主要元素之一。词形的具体含义在不同语言中有很大的区别。例如:在英语中,词形变化指同一单词在不同语境下,由于人称、时态和