首页 >
≡
✍ dations ◷ 2025-07-09 16:26:12 #≡
↔⇔≡当且仅当的逻辑符号当且仅当(英语:if and only if,iff),在数字逻辑中,逻辑算符反异或闸(exclusive or)是对两个运算元的一种逻辑分析类型,符号为XNOR或ENOR或
⇔
{displaystyle Leftrightarrow }
。与一般的逻辑或非NOR不同,当两两数值相同为是,而数值不同时为否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在这个条件成立,并且仅在这个条件成立时”之意。当命题
p
,
q
{displaystyle p,q}
满足“当
p
{displaystyle p}
则
q
{displaystyle q}
”且“仅当
p
{displaystyle p}
则
q
{displaystyle q}
”时,称为“当且仅当
p
{displaystyle p}
则
q
{displaystyle q}
”,其他等价的说法有“
q
{displaystyle q}
当且仅当
p
{displaystyle p}
”;“
p
{displaystyle p}
是
q
{displaystyle q}
的充分必要条件(充要条件)”;“
p
{displaystyle p}
等价于
q
{displaystyle q}
”。一般而言,当我们看到“当且仅当
p
{displaystyle p}
则
q
{displaystyle q}
”,我们可以知道“如果
p
{displaystyle p}
成立时,则
q
{displaystyle q}
一定成立;如果
q
{displaystyle q}
成立时,则
p
{displaystyle p}
也一定成立”;“如果
p
{displaystyle p}
不成立时,则
q
{displaystyle q}
一定不成立;如果
q
{displaystyle q}
不成立时,则
p
{displaystyle p}
也一定不成立”。与此相对应的逻辑符号是
↔
{displaystyle leftrightarrow }
和
⇔
{displaystyle Leftrightarrow }
。这两个通常被当作是相等的。但是,一些数学教科书,特别是那些关于一阶逻辑而非命题逻辑对此有所区别,在那里前者被用来表示逻辑公式,后者表示那些公式的推理(譬如说在元逻辑中)。设
p
{displaystyle p}
与
q
{displaystyle q}
为两命题,在证明“当且仅当
p
{displaystyle p}
则
q
{displaystyle q}
”时,这相当于去同时证明陈述“如果
p
{displaystyle p}
成立,则
q
{displaystyle q}
成立”和“如果
q
{displaystyle q}
成立,则
p
{displaystyle p}
成立”。另外,也可以证明“如果
p
{displaystyle p}
成立,则
q
{displaystyle q}
成立”和“如果
p
{displaystyle p}
不成立,则
q
{displaystyle q}
不成立”,后者作为对偶,等价于“如果
q
{displaystyle q}
成立,则
p
{displaystyle p}
成立”。在出版物中,英语iff的表示标记最早出现在约翰·L·凯利的《一般拓扑学》中。它的发明通常被认为是归于数学家保罗·哈尔莫斯,但在哈尔莫斯的自传中却声明该标记另有出处,他只是首先在数学领域使用。简单地,如下的两个例子可以说明这两者的不同:第1句指小王一定会吃香草口味的冰淇淋,但没有排除他会吃香草口味以外冰淇淋的可能性,能肯定的是他不会拒绝香草口味的冰淇淋。第2句指小王一定吃且只吃香草口味的冰淇淋,他不会吃其它口味的冰淇淋。用“当且仅当”连接两个句子造成的句子被称为是“双条件句”。“当且仅当”把两个句子结合成新的句子。它不应该跟描述两个句子之间关系的“逻辑等价”混淆。双条件句“当且仅当
p
{displaystyle p}
则
q
{displaystyle q}
”,是用
p
{displaystyle p}
和
q
{displaystyle q}
来陈述
p
{displaystyle p}
和
q
{displaystyle q}
所描述的事件状况之间的关系。相对照的,“
p
{displaystyle p}
逻辑等价于
q
{displaystyle q}
”则注重两个句子:它只是陈述两个句子之间的关系,而不是它们所介绍的什么事情。这里的区别非常容易混淆,已经使得很多哲学家迷惑。当然,在“
p
{displaystyle p}
逻辑等价于
q
{displaystyle q}
”时,“当且仅当
p
{displaystyle p}
则
q
{displaystyle q}
”为真,但是它的逆并不成立。让我们重新考虑上面的句子:很清楚,对于这个特定的双条件句,两个半句之间并没有逻辑等价。如想了解更多的差异,请参照W. V. Quine的《数理逻辑,第5节》。在哲学和逻辑学中,“当且仅当”通常用作定义,因为定义被认为是全称量化的双条件句。但在数学中,相比起“当且仅当”,如果通常被用于定义。这里给出一些使用到“当且仅当的”真陈述,也是真双条件句(第一句是一个定义的例子):“当且仅当”在逻辑领域以外,在数学出版物或者普通的谈话中也会用到。如同上面所说,它指的是某个陈述是另外一个的充分必要条件。这是一个数学术语的例子。
相关
- 戴维·巴尔的摩戴维·巴尔的摩(英语:David Baltimore,1938年3月7日-),美国生物学家,1975年诺贝尔生理学或医学奖获得者之一。他是加州理工学院生物学教授,并曾在1997年到2006年期间担任校长。他还
- 脑死脑死(或称脑死亡,英语:Brain death),作为死亡判定的准则之一,通常指包括脑干在内的全脑部功能丧失的不可逆转的状态。近年以来,脑死已经成为判断死亡的一个重要标志。一个人若停止
- 放射虫门放射虫门(学名:Radiozoa)又名放线虫,为海中浮游生物,有如球形对称,带有硅壳,壳上有美丽的花纹。身体内有膜质中央囊,囊面穿有许多小孔,将身体分为内外两部分,外部被胶状物质,多有液泡,内
- 双鞭毛生物无根虫门 Apusozoa 泛植物 Archaeplastida 有孔虫界 Rhizaria 囊泡藻界 Chromalveolata双鞭毛生物是其真核细胞具有两个鞭毛的一种生物,是真核生物的两大类群之一。双鞭毛生
- 宪法宪法正文I ∙ II ∙ III ∙ IV ∙ V ∙ VI ∙ VII其它修正案 XI ∙ XII ∙ XIII ∙ XIV ∙ XV XVI ∙ XVII ∙ XVIII ∙ XIX ∙ XX XXI ∙ XXII ∙ XXIII ∙
- 呼出呼出(exhalation、expiration)是指动物进行呼吸时,空气或其他物质经由气管离开肺泡的运动。主要是由横膈膜的收缩与舒张来控制。当呼出空气时,横隔膜会呈拱形,肺里的空气体积会减
- 法兰克福大学歌德 - 美茵河畔法兰克福大学(德语:Goethe-Universität Frankfurt am Main),德文简称为“法兰克福大学”(Uni Frankfurt)或“歌德大学”(Goethe Uni)﹔据此,中文亦有称作“歌大”或“
- 意大利半岛意大利半岛(意大利语:Penisola italiana),又名亚平宁半岛 (Apennines)(意大利语:Penisola appenninica)是南欧洲三大半岛之一,位居三大半岛的中间,在地中海之北。亚平宁半岛北起波河
- 理查·道尔威廉·理查德·沙博·多尔爵士,CH, OBE, FRS(英语:Sir William Richard Shaboe Doll,1912年10月28日-2005年7月24日),英国科学家及流行病学家,与另一科学家奥斯汀·布拉德福德·希
- 酒渣鼻酒糟鼻(Rosacea,又称玫瑰痤疮)是一种以脸部红斑 和丘疹(有时)为特点的慢性皮肤病。酒糟鼻在所有年龄层都可能发病并且分为四种类型,其中三种患及皮肤,而第四种患及眼睛。疾病若得不