✍ dations ◷ 2025-09-19 12:31:59 #≡
↔⇔≡当且仅当的逻辑符号当且仅当(英语:if and only if,iff),在数字逻辑中,逻辑算符反异或闸(exclusive or)是对两个运算元的一种逻辑分析类型,符号为XNOR或ENOR或 ⇔ {displaystyle Leftrightarrow } 。与一般的逻辑或非NOR不同,当两两数值相同为是,而数值不同时为否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在这个条件成立,并且仅在这个条件成立时”之意。当命题 p , q {displaystyle p,q} 满足“当 p {displaystyle p} 则 q {displaystyle q} ”且“仅当 p {displaystyle p} 则 q {displaystyle q} ”时,称为“当且仅当 p {displaystyle p} 则 q {displaystyle q} ”,其他等价的说法有“ q {displaystyle q} 当且仅当 p {displaystyle p} ”;“ p {displaystyle p} 是 q {displaystyle q} 的充分必要条件(充要条件)”;“ p {displaystyle p} 等价于 q {displaystyle q} ”。一般而言,当我们看到“当且仅当 p {displaystyle p} 则 q {displaystyle q} ”,我们可以知道“如果 p {displaystyle p} 成立时,则 q {displaystyle q} 一定成立;如果 q {displaystyle q} 成立时,则 p {displaystyle p} 也一定成立”;“如果 p {displaystyle p} 不成立时,则 q {displaystyle q} 一定不成立;如果 q {displaystyle q} 不成立时,则 p {displaystyle p} 也一定不成立”。与此相对应的逻辑符号是 ↔ {displaystyle leftrightarrow } 和 ⇔ {displaystyle Leftrightarrow } 。这两个通常被当作是相等的。但是,一些数学教科书,特别是那些关于一阶逻辑而非命题逻辑对此有所区别,在那里前者被用来表示逻辑公式,后者表示那些公式的推理(譬如说在元逻辑中)。设 p {displaystyle p} 与 q {displaystyle q} 为两命题,在证明“当且仅当 p {displaystyle p} 则 q {displaystyle q} ”时,这相当于去同时证明陈述“如果 p {displaystyle p} 成立,则 q {displaystyle q} 成立”和“如果 q {displaystyle q} 成立,则 p {displaystyle p} 成立”。另外,也可以证明“如果 p {displaystyle p} 成立,则 q {displaystyle q} 成立”和“如果 p {displaystyle p} 不成立,则 q {displaystyle q} 不成立”,后者作为对偶,等价于“如果 q {displaystyle q} 成立,则 p {displaystyle p} 成立”。在出版物中,英语iff的表示标记最早出现在约翰·L·凯利的《一般拓扑学》中。它的发明通常被认为是归于数学家保罗·哈尔莫斯,但在哈尔莫斯的自传中却声明该标记另有出处,他只是首先在数学领域使用。简单地,如下的两个例子可以说明这两者的不同:第1句指小王一定会吃香草口味的冰淇淋,但没有排除他会吃香草口味以外冰淇淋的可能性,能肯定的是他不会拒绝香草口味的冰淇淋。第2句指小王一定吃且只吃香草口味的冰淇淋,他不会吃其它口味的冰淇淋。用“当且仅当”连接两个句子造成的句子被称为是“双条件句”。“当且仅当”把两个句子结合成新的句子。它不应该跟描述两个句子之间关系的“逻辑等价”混淆。双条件句“当且仅当 p {displaystyle p} 则 q {displaystyle q} ”,是用 p {displaystyle p} 和 q {displaystyle q} 来陈述 p {displaystyle p} 和 q {displaystyle q} 所描述的事件状况之间的关系。相对照的,“ p {displaystyle p} 逻辑等价于 q {displaystyle q} ”则注重两个句子:它只是陈述两个句子之间的关系,而不是它们所介绍的什么事情。这里的区别非常容易混淆,已经使得很多哲学家迷惑。当然,在“ p {displaystyle p} 逻辑等价于 q {displaystyle q} ”时,“当且仅当 p {displaystyle p} 则 q {displaystyle q} ”为真,但是它的逆并不成立。让我们重新考虑上面的句子:很清楚,对于这个特定的双条件句,两个半句之间并没有逻辑等价。如想了解更多的差异,请参照W. V. Quine的《数理逻辑,第5节》。在哲学和逻辑学中,“当且仅当”通常用作定义,因为定义被认为是全称量化的双条件句。但在数学中,相比起“当且仅当”,如果通常被用于定义。这里给出一些使用到“当且仅当的”真陈述,也是真双条件句(第一句是一个定义的例子):“当且仅当”在逻辑领域以外,在数学出版物或者普通的谈话中也会用到。如同上面所说,它指的是某个陈述是另外一个的充分必要条件。这是一个数学术语的例子。

相关

  • 循环系统循环系统(英语:circulatory system),也称为心血管系统(英语:cardiovascular system)或血管系统(英语:vascular system)是负责血液循环,在细胞间传送养分(如氨基酸及电解质)、氧气、二氧化
  • 感觉性失语症感觉性失语症 ,又被称为韦尼克氏失语症 , 流畅失语症 ,或接受性失语症。此类患者有语言理解障碍,患者的阅读能力或了解他人谈话内容的能力低下。虽然患者能够说初具语法、速
  • DINP邻苯二甲酸二异壬酯(Di-iso-nonyl Phthalate,缩写为DINP,化学式C26H42O4, 结构式为C6H4(COO(CH2)6CH(CH3)2)2,为邻苯二甲酸与异壬醇生成的酯类化合物。它是邻苯二甲酸酯的一种,也是
  • 亚历山大大帝马其顿的亚历山大三世(古希腊语:Ἀλέξανδρος Γ' ὁ Μακεδών,其名字亚历山大意为“人类的(.mw-parser-output .Polytonic{font-family:"SBL BibLit","SBL Greek
  • 北上广深一线城市(First-tier City)是中国民间对城市分级体系中的最高等级城市的称谓,最初来源于房地产业。目前,普遍被公认为中国一线城市的包括首都北京、直辖市上海,以及广东省省会广
  • 科学研究科学方法(英语:scientific method)指的是检查自然现象、获取新知识或修正与整合先前已得的知识,所使用的一整套技术。为了合乎科学精神,这方法必须建立于收集可观察、可经验(empir
  • 唑类唑(Azole)在有机化合物的命名中指五元环骨架的两个或两个以上杂原子,其中至少一个是氮的杂环化合物。该名称源于Hantzsch-Widman杂环命名系统(英语:Hantzsch–Widman nomenclatur
  • 缺失删除(英语:Deletion)在遗传学中有时也称为删除突变或微删除,指染色体或DNA序列的一部分发生缺失,进而失去这些遗传物质。删除的程度不一,可能是单一碱基对,也可能是整个染色体。此
  • 肛裂肛裂又称裂痔,钩肠痔是一种发病率极高的肛肠疾病。肛裂是指肛管皮肤全层裂开,并形成慢性溃疡的一种疾病。好发于肛门前后正中,多见于后正中。临床以周期性肛门疼痛、大便带血、
  • 保罗·格莱斯保罗·格莱斯(Herbert Paul Grice,1913年3月13日-1988年8月28日)著名英国哲学家,属于分析哲学学派,著作以语言哲学为主。