蠕虫链模型

✍ dations ◷ 2025-11-07 10:15:04 #高分子化合物,生物物理学,高分子物理学

蠕虫链模型(worm-like chain,WLC)是聚合物物理学中用来阐释半弹性聚合物特性的模型。是Kratky(英语:Otto Kratky)-Porod(英语:Günther Porod)模型的后续版本。

蠕虫链理论模型假设存在一根连续且具弹性的均质棒状物。与自由连接链(英语:Ideal chain)不同的是,他们的弹性仅在独立片段。蠕虫理论特别适用于较坚硬的聚合物,因为此种聚合物的片段拥有一种协同性,大致上会指向同一个方向。依据此理论,在室温下,聚合物的构型会圆滑地弯曲;再绝对零度下( T = 0 {\displaystyle T=0} K),ˋ聚合物则会呈现坚硬的棍状构型。

对于长度 l {\displaystyle l} 的聚合物,将聚合物的路径参数化为 s ( 0 , l ) {\displaystyle s\in (0,l)} 。令 t ^ ( s ) {\displaystyle {\hat {t}}(s)} 为该链再 s {\displaystyle s} 时的单位切线参数,且 r ( s ) {\displaystyle {\vec {r}}(s)} 为该链的位置向量。

得出:

由上可推知此模型的方向相关函数(英语:correlation function)(correlation function)遵守指数衰减:

P {\displaystyle P} 为聚合物的持久长度,即聚合物平均长度的平方:

R 2 = R R = 0 l t ^ ( s ) d s 0 l t ^ ( s ) d s = 0 l d s 0 l t ^ ( s ) t ^ ( s ) d s = 0 l d s 0 l e | s s | / P d s R 2 = 2 P l {\displaystyle \langle R^{2}\rangle =\langle {\vec {R}}\cdot {\vec {R}}\rangle =\left\langle \int _{0}^{l}{\hat {t}}(s)ds\cdot \int _{0}^{l}{\hat {t}}(s')ds'\right\rangle =\int _{0}^{l}ds\int _{0}^{l}\langle {\hat {t}}(s)\cdot {\hat {t}}(s')\rangle ds'=\int _{0}^{l}ds\int _{0}^{l}e^{-\left|s-s'\right|/P}ds'\langle R^{2}\rangle =2Pl\left}

蠕虫链理论应用于一些重要的生物性聚合物,包含:

在室温下,聚合物两端的距离会远比原长度 L 0 {\displaystyle L_{0}} 还短。因为热波动会造成聚合物蜷曲,使聚合物任意排列。

Upon stretching the polymer, the accessible spectrum of fluctuations reduces, which causes an entropic force against the external elongation.This entropic force can be estimated by considering the entropic Hamiltonian:

H = H e n t r o p i c + H e x t e r n a l = 1 2 k B T 0 L 0 P ( 2 r ( s ) s 2 ) 2 d s x F {\displaystyle H=H_{\rm {entropic}}+H_{\rm {external}}={\frac {1}{2}}k_{B}T\int _{0}^{L_{0}}P\cdot \left({\frac {\partial ^{2}{\vec {r}}(s)}{\partial s^{2}}}\right)^{2}ds-xF} .

Here, the contour length is represented by L 0 {\displaystyle L_{0}} , the persistence length by P {\displaystyle P} , the extension and external force is represented by extension x F {\displaystyle xF} .

Laboratory tools such as atomic force microscopy (AFM) and optical tweezers have been used to characterize the force-dependent stretching behavior of the polymers listed above. An interpolation formula that approximates the force-extension behavior is (J. F. Marko, E. D. Siggia (1995)):


where k B {\displaystyle k_{B}} is the Boltzmann constant and T {\displaystyle T} is the absolute temperature.

When extending most polymers, their elastic response cannot be neglected. As an example, for the well-studied case of stretching DNA in physiological conditions (near neutral pH, ionic strength approximately 100 mM) at room temperature, the compliance of the DNA along the contour must be accounted for. This enthalpic compliance is accounted for the material parameter K 0 {\displaystyle K_{0}} , the stretch modulus. For significantly extended polymers, this yields the following Hamiltonian:

H = H e n t r o p i c + H e n t h a l p i c + H e x t e r n a l = 1 2 k B T 0 L 0 P ( r ( s ) s ) 2 d s + 1 2 K 0 L 0 x 2 x F {\displaystyle H=H_{\rm {entropic}}+H_{\rm {enthalpic}}+H_{\rm {external}}={\frac {1}{2}}k_{B}T\int _{0}^{L_{0}}P\cdot \left({\frac {\partial {\vec {r}}(s)}{\partial s}}\right)^{2}ds+{\frac {1}{2}}{\frac {K_{0}}{L_{0}}}x^{2}-xF} ,

with L 0 {\displaystyle L_{0}} , the contour length, P {\displaystyle P} , the persistence length, x {\displaystyle x} the extension and F {\displaystyle F} external force. This expression takes into account both the entropic term, which regards changes in the polymer conformation, and the enthalpic term, which describes the elongation of the polymer due to the external force. In the expression above, the enthalpic response is described as a linear Hookian spring.Several approximations have been put forward, dependent on the applied external force. For the low-force regime (F < about 10 pN), the following interpolation formula was derived:

F P k B T = 1 4 ( 1 x L 0 + F K 0 ) 2 1 4 + x L 0 F K 0 {\displaystyle {\frac {FP}{k_{B}T}}={\frac {1}{4}}\left(1-{\frac {x}{L_{0}}}+{\frac {F}{K_{0}}}\right)^{-2}-{\frac {1}{4}}+{\frac {x}{L_{0}}}-{\frac {F}{K_{0}}}} .

For the higher-force regime, where the polymer is significantly extended, the following approximation is valid:

x = L 0 ( 1 1 2 ( k B T F P ) 1 / 2 + F K 0 ) {\displaystyle x=L_{0}\left(1-{\frac {1}{2}}\left({\frac {k_{B}T}{FP}}\right)^{1/2}+{\frac {F}{K_{0}}}\right)} .

A typical value for the stretch modulus of double-stranded DNA is around 1000 pN and 45 nm for the persistence length.

相关

  • 包含式包含式(clusivity)在语言学上是指介于包容性与排除'的第一人称代词及动词之间的语法区分,亦称为包容性的"我们"及排除性的"我们"。包容性的"我们"具体包括"谈话的对象"(addresse
  • 劳合·乔治大卫·劳合·乔治,第一代德威弗尔的劳合-乔治伯爵,OM,PC(David Lloyd George, 1st Earl Lloyd-George of Dwyfor,1863年1月17日-1945年3月26日),英国自由党政治家,在1916年至1922年间
  • 陈立国陈立国(英语:Remus Li-Kuo Chen),中华民国外交官。毕业于国立台湾大学外国语文学系学士、国立台湾师范大学英语研究所硕士,曾任外交部北美司副司长、驻美国台北经济文化代表处国
  • 全国计算机等级考试全国计算机等级考试(英文:National Computer Rank Examination)是中华人民共和国教育部于1994年推出的主要针对非计算机专业学生及从业人员的计算机能力考试,共分4级。包括计算
  • 嘉玛道理会士盎博罗削嘉玛道理会士盎博罗削(Ambrogio Camaldolese,原名 Ambrogio Traversari,1386年-1439年10月20日),嘉玛道理会神学家,意大利文艺复兴时期人文主义者,天主教圣人,瞻礼11月20日。盎博罗削
  • Camellia在密码学中,Camellia是一种为许多组织所推崇的块密码(block cipher),包括欧盟的NESSIE项目(作为选定算法)和日本的CRYPTREC项目(作为推荐算法)。该算法由三菱和日本电信电话(NTT)在200
  • 华品章华品章(1902年-1937年12月),四川省西昌县人。他为抗日战争期间阵亡的中国军方将领之一。毕业于黄埔军校第四期,曾参加北伐,后任国民革命军第八十八师二六二旅上校副旅长,1937年12月
  • Prime95Prime95是一款运行于Windows中的开源软件,由寻找梅森素数的分布式计算项目GIMPS的乔治·沃特曼编写。Prime95的另外一个作用是用于测试计算机系统的稳定性。由于该软件需要进
  • 中华人民共和国公民身份号码中华人民共和国公民身份号码是中华人民共和国为中国大陆每个公民从出生之日起,及港澳台居民从申请居住证之日起,编定的唯一的、终身不变的身份代码,在中华人民共和国公民办理涉
  • 敢问路在何方 (歌曲)《敢问路在何方》,是1982年电视剧《西游记》的主题曲,由阎肃作词、许镜清作曲。《敢问路在何方》先有词后有曲。据作词者阎肃的儿子阎宇忆述,阎肃当时一口气写好了由“你挑着担