蠕虫链模型

✍ dations ◷ 2025-09-14 02:10:11 #高分子化合物,生物物理学,高分子物理学

蠕虫链模型(worm-like chain,WLC)是聚合物物理学中用来阐释半弹性聚合物特性的模型。是Kratky(英语:Otto Kratky)-Porod(英语:Günther Porod)模型的后续版本。

蠕虫链理论模型假设存在一根连续且具弹性的均质棒状物。与自由连接链(英语:Ideal chain)不同的是,他们的弹性仅在独立片段。蠕虫理论特别适用于较坚硬的聚合物,因为此种聚合物的片段拥有一种协同性,大致上会指向同一个方向。依据此理论,在室温下,聚合物的构型会圆滑地弯曲;再绝对零度下( T = 0 {\displaystyle T=0} K),ˋ聚合物则会呈现坚硬的棍状构型。

对于长度 l {\displaystyle l} 的聚合物,将聚合物的路径参数化为 s ( 0 , l ) {\displaystyle s\in (0,l)} 。令 t ^ ( s ) {\displaystyle {\hat {t}}(s)} 为该链再 s {\displaystyle s} 时的单位切线参数,且 r ( s ) {\displaystyle {\vec {r}}(s)} 为该链的位置向量。

得出:

由上可推知此模型的方向相关函数(英语:correlation function)(correlation function)遵守指数衰减:

P {\displaystyle P} 为聚合物的持久长度,即聚合物平均长度的平方:

R 2 = R R = 0 l t ^ ( s ) d s 0 l t ^ ( s ) d s = 0 l d s 0 l t ^ ( s ) t ^ ( s ) d s = 0 l d s 0 l e | s s | / P d s R 2 = 2 P l {\displaystyle \langle R^{2}\rangle =\langle {\vec {R}}\cdot {\vec {R}}\rangle =\left\langle \int _{0}^{l}{\hat {t}}(s)ds\cdot \int _{0}^{l}{\hat {t}}(s')ds'\right\rangle =\int _{0}^{l}ds\int _{0}^{l}\langle {\hat {t}}(s)\cdot {\hat {t}}(s')\rangle ds'=\int _{0}^{l}ds\int _{0}^{l}e^{-\left|s-s'\right|/P}ds'\langle R^{2}\rangle =2Pl\left}

蠕虫链理论应用于一些重要的生物性聚合物,包含:

在室温下,聚合物两端的距离会远比原长度 L 0 {\displaystyle L_{0}} 还短。因为热波动会造成聚合物蜷曲,使聚合物任意排列。

Upon stretching the polymer, the accessible spectrum of fluctuations reduces, which causes an entropic force against the external elongation.This entropic force can be estimated by considering the entropic Hamiltonian:

H = H e n t r o p i c + H e x t e r n a l = 1 2 k B T 0 L 0 P ( 2 r ( s ) s 2 ) 2 d s x F {\displaystyle H=H_{\rm {entropic}}+H_{\rm {external}}={\frac {1}{2}}k_{B}T\int _{0}^{L_{0}}P\cdot \left({\frac {\partial ^{2}{\vec {r}}(s)}{\partial s^{2}}}\right)^{2}ds-xF} .

Here, the contour length is represented by L 0 {\displaystyle L_{0}} , the persistence length by P {\displaystyle P} , the extension and external force is represented by extension x F {\displaystyle xF} .

Laboratory tools such as atomic force microscopy (AFM) and optical tweezers have been used to characterize the force-dependent stretching behavior of the polymers listed above. An interpolation formula that approximates the force-extension behavior is (J. F. Marko, E. D. Siggia (1995)):


where k B {\displaystyle k_{B}} is the Boltzmann constant and T {\displaystyle T} is the absolute temperature.

When extending most polymers, their elastic response cannot be neglected. As an example, for the well-studied case of stretching DNA in physiological conditions (near neutral pH, ionic strength approximately 100 mM) at room temperature, the compliance of the DNA along the contour must be accounted for. This enthalpic compliance is accounted for the material parameter K 0 {\displaystyle K_{0}} , the stretch modulus. For significantly extended polymers, this yields the following Hamiltonian:

H = H e n t r o p i c + H e n t h a l p i c + H e x t e r n a l = 1 2 k B T 0 L 0 P ( r ( s ) s ) 2 d s + 1 2 K 0 L 0 x 2 x F {\displaystyle H=H_{\rm {entropic}}+H_{\rm {enthalpic}}+H_{\rm {external}}={\frac {1}{2}}k_{B}T\int _{0}^{L_{0}}P\cdot \left({\frac {\partial {\vec {r}}(s)}{\partial s}}\right)^{2}ds+{\frac {1}{2}}{\frac {K_{0}}{L_{0}}}x^{2}-xF} ,

with L 0 {\displaystyle L_{0}} , the contour length, P {\displaystyle P} , the persistence length, x {\displaystyle x} the extension and F {\displaystyle F} external force. This expression takes into account both the entropic term, which regards changes in the polymer conformation, and the enthalpic term, which describes the elongation of the polymer due to the external force. In the expression above, the enthalpic response is described as a linear Hookian spring.Several approximations have been put forward, dependent on the applied external force. For the low-force regime (F < about 10 pN), the following interpolation formula was derived:

F P k B T = 1 4 ( 1 x L 0 + F K 0 ) 2 1 4 + x L 0 F K 0 {\displaystyle {\frac {FP}{k_{B}T}}={\frac {1}{4}}\left(1-{\frac {x}{L_{0}}}+{\frac {F}{K_{0}}}\right)^{-2}-{\frac {1}{4}}+{\frac {x}{L_{0}}}-{\frac {F}{K_{0}}}} .

For the higher-force regime, where the polymer is significantly extended, the following approximation is valid:

x = L 0 ( 1 1 2 ( k B T F P ) 1 / 2 + F K 0 ) {\displaystyle x=L_{0}\left(1-{\frac {1}{2}}\left({\frac {k_{B}T}{FP}}\right)^{1/2}+{\frac {F}{K_{0}}}\right)} .

A typical value for the stretch modulus of double-stranded DNA is around 1000 pN and 45 nm for the persistence length.

相关

  • 台北新公园二二八和平公园,原名为台北公园,后改称台北新公园,是一座位于台湾台北市中正区的公园,北起襄阳路、南至凯达格兰大道、西为怀宁街、东为公园路,占地71,520平方米,邻近总统府、外交
  • 英属北美法英属北美法(The British North America Act)是两部英国法律,组成了加拿大的联邦制度,并确立了加拿大的自治领地位。共有两部同名法令,分别于1867年和1871年立法。其中1867年英属
  • 光纤通信光纤通信(英语:Fiber-optic communication)是指一种利用光与光纤(Optical Fiber)传递信息的一种方式,属于有线通信的一种。光经过调制(Modulation)后便能携带信息。自1980年代起,光纤
  • 麦克风麦克风(音译自英文microphone,简称麦,又称微音器或话筒,正式的中文名是传声器),是一种将声音转换成电子信号的换能器。动圈式麦克风(Dynamic Microphone)基本的构造包含线圈、振膜、
  • 困难问题困难问题(英语:Hard problem of consciousness,直译:知觉难题)是指:感官有感质或关于现象的经验,这是怎么产生的?为什么会这样?——举例来说,我们为什么会有热感、痛感,而不像体温计、
  • 无线电接入技术无线电接入技术(Radio Access Technology,简称:RAT)是无线通信网络的底层物理连接方法。截至2013年,很多新型的手机,例如Nexus 4或iPhone 5都能够在一台设备上支持多个RAT,例如蓝牙
  • 皱盖囊皮菌蕈伞凸面可食用皱盖囊皮菌(学名:),俗称藏红花阳伞(saffron parasol)、藏红花粉盖(saffron powder-cap)或土状粉盖(earthy powder-cap),是一种担子菌门真菌,隶属于囊皮菌属。这种真菌是一
  • Spike Chunsoft Spike Chunsoft株式会社(日语:株式会社スパイク・チュンソフト)是日本的一家电子游戏开发商及发行商,从属于多玩国。公司成立于2012年4月1日,由日本游戏厂商Spike和Chunsoft合并
  • 莱昂·德·格雷夫莱昂·德·格雷夫(León de Greiff),全名弗朗西斯科·德·阿西斯·莱昂·博吉斯劳·德·格雷夫·霍伊斯勒(Francisco de Asís León Bogislao de Greiff Haeusler,1895年7月22日
  • 何定何定(?-272年),汝南郡(今河南省平舆北)人,三国时孙吴政治人物。何定本是孙权给使,后来出任补吏。孙皓即位,自称先帝旧人,孙皓任命他为楼下都尉,掌管酤籴,骄横作威福。建衡元年(269年)左丞相