蠕虫链模型

✍ dations ◷ 2025-11-27 20:04:19 #高分子化合物,生物物理学,高分子物理学

蠕虫链模型(worm-like chain,WLC)是聚合物物理学中用来阐释半弹性聚合物特性的模型。是Kratky(英语:Otto Kratky)-Porod(英语:Günther Porod)模型的后续版本。

蠕虫链理论模型假设存在一根连续且具弹性的均质棒状物。与自由连接链(英语:Ideal chain)不同的是,他们的弹性仅在独立片段。蠕虫理论特别适用于较坚硬的聚合物,因为此种聚合物的片段拥有一种协同性,大致上会指向同一个方向。依据此理论,在室温下,聚合物的构型会圆滑地弯曲;再绝对零度下( T = 0 {\displaystyle T=0} K),ˋ聚合物则会呈现坚硬的棍状构型。

对于长度 l {\displaystyle l} 的聚合物,将聚合物的路径参数化为 s ( 0 , l ) {\displaystyle s\in (0,l)} 。令 t ^ ( s ) {\displaystyle {\hat {t}}(s)} 为该链再 s {\displaystyle s} 时的单位切线参数,且 r ( s ) {\displaystyle {\vec {r}}(s)} 为该链的位置向量。

得出:

由上可推知此模型的方向相关函数(英语:correlation function)(correlation function)遵守指数衰减:

P {\displaystyle P} 为聚合物的持久长度,即聚合物平均长度的平方:

R 2 = R R = 0 l t ^ ( s ) d s 0 l t ^ ( s ) d s = 0 l d s 0 l t ^ ( s ) t ^ ( s ) d s = 0 l d s 0 l e | s s | / P d s R 2 = 2 P l {\displaystyle \langle R^{2}\rangle =\langle {\vec {R}}\cdot {\vec {R}}\rangle =\left\langle \int _{0}^{l}{\hat {t}}(s)ds\cdot \int _{0}^{l}{\hat {t}}(s')ds'\right\rangle =\int _{0}^{l}ds\int _{0}^{l}\langle {\hat {t}}(s)\cdot {\hat {t}}(s')\rangle ds'=\int _{0}^{l}ds\int _{0}^{l}e^{-\left|s-s'\right|/P}ds'\langle R^{2}\rangle =2Pl\left}

蠕虫链理论应用于一些重要的生物性聚合物,包含:

在室温下,聚合物两端的距离会远比原长度 L 0 {\displaystyle L_{0}} 还短。因为热波动会造成聚合物蜷曲,使聚合物任意排列。

Upon stretching the polymer, the accessible spectrum of fluctuations reduces, which causes an entropic force against the external elongation.This entropic force can be estimated by considering the entropic Hamiltonian:

H = H e n t r o p i c + H e x t e r n a l = 1 2 k B T 0 L 0 P ( 2 r ( s ) s 2 ) 2 d s x F {\displaystyle H=H_{\rm {entropic}}+H_{\rm {external}}={\frac {1}{2}}k_{B}T\int _{0}^{L_{0}}P\cdot \left({\frac {\partial ^{2}{\vec {r}}(s)}{\partial s^{2}}}\right)^{2}ds-xF} .

Here, the contour length is represented by L 0 {\displaystyle L_{0}} , the persistence length by P {\displaystyle P} , the extension and external force is represented by extension x F {\displaystyle xF} .

Laboratory tools such as atomic force microscopy (AFM) and optical tweezers have been used to characterize the force-dependent stretching behavior of the polymers listed above. An interpolation formula that approximates the force-extension behavior is (J. F. Marko, E. D. Siggia (1995)):


where k B {\displaystyle k_{B}} is the Boltzmann constant and T {\displaystyle T} is the absolute temperature.

When extending most polymers, their elastic response cannot be neglected. As an example, for the well-studied case of stretching DNA in physiological conditions (near neutral pH, ionic strength approximately 100 mM) at room temperature, the compliance of the DNA along the contour must be accounted for. This enthalpic compliance is accounted for the material parameter K 0 {\displaystyle K_{0}} , the stretch modulus. For significantly extended polymers, this yields the following Hamiltonian:

H = H e n t r o p i c + H e n t h a l p i c + H e x t e r n a l = 1 2 k B T 0 L 0 P ( r ( s ) s ) 2 d s + 1 2 K 0 L 0 x 2 x F {\displaystyle H=H_{\rm {entropic}}+H_{\rm {enthalpic}}+H_{\rm {external}}={\frac {1}{2}}k_{B}T\int _{0}^{L_{0}}P\cdot \left({\frac {\partial {\vec {r}}(s)}{\partial s}}\right)^{2}ds+{\frac {1}{2}}{\frac {K_{0}}{L_{0}}}x^{2}-xF} ,

with L 0 {\displaystyle L_{0}} , the contour length, P {\displaystyle P} , the persistence length, x {\displaystyle x} the extension and F {\displaystyle F} external force. This expression takes into account both the entropic term, which regards changes in the polymer conformation, and the enthalpic term, which describes the elongation of the polymer due to the external force. In the expression above, the enthalpic response is described as a linear Hookian spring.Several approximations have been put forward, dependent on the applied external force. For the low-force regime (F < about 10 pN), the following interpolation formula was derived:

F P k B T = 1 4 ( 1 x L 0 + F K 0 ) 2 1 4 + x L 0 F K 0 {\displaystyle {\frac {FP}{k_{B}T}}={\frac {1}{4}}\left(1-{\frac {x}{L_{0}}}+{\frac {F}{K_{0}}}\right)^{-2}-{\frac {1}{4}}+{\frac {x}{L_{0}}}-{\frac {F}{K_{0}}}} .

For the higher-force regime, where the polymer is significantly extended, the following approximation is valid:

x = L 0 ( 1 1 2 ( k B T F P ) 1 / 2 + F K 0 ) {\displaystyle x=L_{0}\left(1-{\frac {1}{2}}\left({\frac {k_{B}T}{FP}}\right)^{1/2}+{\frac {F}{K_{0}}}\right)} .

A typical value for the stretch modulus of double-stranded DNA is around 1000 pN and 45 nm for the persistence length.

相关

  • 甲四醇硅酸原碳酸是一种假想的酸或官能团,化学式H4CO4。它是带有RC(OH)3结构的一种酸。在一个原碳酸分子中,碳原子与4个羟基以共价键相连。这种化合物至今未被发现,因为它极不稳定,立
  • 中菲海道通行协定暨农渔业合作备忘录《中菲海道通行协定暨农渔业合作备忘录》(英语:Agreement on Sea Lane Passage and the Memorandum on Agriculture and Fisheries Cooperation between the Repubilic of Chi
  • 古巴中华民国与古巴关系是指中华民国与古巴共和国之间的关系。1913-1960年两国有正式外交关系,因古巴共产革命导致断交后,与中华民国关系极不友好。目前没有在对方首都互设具大使馆
  • 皮耶罗·迪·科西莫皮耶罗·迪·科西莫(Piero di Cosimo,1462年1月2日 – 1522年4月12日),亦称皮耶罗·迪·洛伦佐(Piero di Lorenzo),是意大利文艺复兴时期的一位画家。科西莫出生于佛罗伦萨,是一位金
  • 同源框蛋白质NANOGn/an/an/an/an/an/an/an/an/an/aNANOG(读法:nanOg)是一种对未分化的胚胎干细胞(ESC)自我更新至关重要的转录因子。人体的NANOG蛋白质由基因编码。人类NANOG蛋白质是一种长305氨酸
  • 保罗·葛哈德保罗·葛哈德(德语:Paul Gerhardt,1607年3月12日-1676年5月27日)是一位德国神学家、路德宗的宣教士及赞美诗创作者。
  • 克罗斯维尔 (阿拉巴马州)克罗斯维尔(英文:Crossville),是美国阿拉巴马州下属的一座城市。面积约为8.37平方英里(约合 21.67平方公里)。根据2010年美国人口普查,该市有人口1,862人,人口密度为222.49/平方英里
  • 亚历山大·吉尔芒费利克斯-亚历山大·吉尔芒(法语:Félix-Alexandre Guilmant,1837年3月12日-1911年3月29日),法国作曲家,管风琴家。生于滨海布洛涅,1871年到巴黎担任管风琴师,后到欧美各地巡回演出。
  • 英特尔国际科学与工程大奖赛英特尔国际科技工程大奖赛(英语:Intel International Science and Engineering Fair,简称:Intel ISEF)是世界上规模最大的中学生科学竞赛。素有全球青少年科学竞赛的“世界杯”之
  • 杉叶藻科杉叶藻科只有一属,1-3种,分布在全球各地,是水生植物,生长在池塘和溪流中,根茎匍匐状,茎直立不分枝,上部突出水面以上;叶4-6-12枚轮生;花小,无花瓣;果实为瘦果。1981年的克朗奎斯特分类法