蠕虫链模型

✍ dations ◷ 2025-06-10 03:16:13 #高分子化合物,生物物理学,高分子物理学

蠕虫链模型(worm-like chain,WLC)是聚合物物理学中用来阐释半弹性聚合物特性的模型。是Kratky(英语:Otto Kratky)-Porod(英语:Günther Porod)模型的后续版本。

蠕虫链理论模型假设存在一根连续且具弹性的均质棒状物。与自由连接链(英语:Ideal chain)不同的是,他们的弹性仅在独立片段。蠕虫理论特别适用于较坚硬的聚合物,因为此种聚合物的片段拥有一种协同性,大致上会指向同一个方向。依据此理论,在室温下,聚合物的构型会圆滑地弯曲;再绝对零度下( T = 0 {\displaystyle T=0} K),ˋ聚合物则会呈现坚硬的棍状构型。

对于长度 l {\displaystyle l} 的聚合物,将聚合物的路径参数化为 s ( 0 , l ) {\displaystyle s\in (0,l)} 。令 t ^ ( s ) {\displaystyle {\hat {t}}(s)} 为该链再 s {\displaystyle s} 时的单位切线参数,且 r ( s ) {\displaystyle {\vec {r}}(s)} 为该链的位置向量。

得出:

由上可推知此模型的方向相关函数(英语:correlation function)(correlation function)遵守指数衰减:

P {\displaystyle P} 为聚合物的持久长度,即聚合物平均长度的平方:

R 2 = R R = 0 l t ^ ( s ) d s 0 l t ^ ( s ) d s = 0 l d s 0 l t ^ ( s ) t ^ ( s ) d s = 0 l d s 0 l e | s s | / P d s R 2 = 2 P l {\displaystyle \langle R^{2}\rangle =\langle {\vec {R}}\cdot {\vec {R}}\rangle =\left\langle \int _{0}^{l}{\hat {t}}(s)ds\cdot \int _{0}^{l}{\hat {t}}(s')ds'\right\rangle =\int _{0}^{l}ds\int _{0}^{l}\langle {\hat {t}}(s)\cdot {\hat {t}}(s')\rangle ds'=\int _{0}^{l}ds\int _{0}^{l}e^{-\left|s-s'\right|/P}ds'\langle R^{2}\rangle =2Pl\left}

蠕虫链理论应用于一些重要的生物性聚合物,包含:

在室温下,聚合物两端的距离会远比原长度 L 0 {\displaystyle L_{0}} 还短。因为热波动会造成聚合物蜷曲,使聚合物任意排列。

Upon stretching the polymer, the accessible spectrum of fluctuations reduces, which causes an entropic force against the external elongation.This entropic force can be estimated by considering the entropic Hamiltonian:

H = H e n t r o p i c + H e x t e r n a l = 1 2 k B T 0 L 0 P ( 2 r ( s ) s 2 ) 2 d s x F {\displaystyle H=H_{\rm {entropic}}+H_{\rm {external}}={\frac {1}{2}}k_{B}T\int _{0}^{L_{0}}P\cdot \left({\frac {\partial ^{2}{\vec {r}}(s)}{\partial s^{2}}}\right)^{2}ds-xF} .

Here, the contour length is represented by L 0 {\displaystyle L_{0}} , the persistence length by P {\displaystyle P} , the extension and external force is represented by extension x F {\displaystyle xF} .

Laboratory tools such as atomic force microscopy (AFM) and optical tweezers have been used to characterize the force-dependent stretching behavior of the polymers listed above. An interpolation formula that approximates the force-extension behavior is (J. F. Marko, E. D. Siggia (1995)):


where k B {\displaystyle k_{B}} is the Boltzmann constant and T {\displaystyle T} is the absolute temperature.

When extending most polymers, their elastic response cannot be neglected. As an example, for the well-studied case of stretching DNA in physiological conditions (near neutral pH, ionic strength approximately 100 mM) at room temperature, the compliance of the DNA along the contour must be accounted for. This enthalpic compliance is accounted for the material parameter K 0 {\displaystyle K_{0}} , the stretch modulus. For significantly extended polymers, this yields the following Hamiltonian:

H = H e n t r o p i c + H e n t h a l p i c + H e x t e r n a l = 1 2 k B T 0 L 0 P ( r ( s ) s ) 2 d s + 1 2 K 0 L 0 x 2 x F {\displaystyle H=H_{\rm {entropic}}+H_{\rm {enthalpic}}+H_{\rm {external}}={\frac {1}{2}}k_{B}T\int _{0}^{L_{0}}P\cdot \left({\frac {\partial {\vec {r}}(s)}{\partial s}}\right)^{2}ds+{\frac {1}{2}}{\frac {K_{0}}{L_{0}}}x^{2}-xF} ,

with L 0 {\displaystyle L_{0}} , the contour length, P {\displaystyle P} , the persistence length, x {\displaystyle x} the extension and F {\displaystyle F} external force. This expression takes into account both the entropic term, which regards changes in the polymer conformation, and the enthalpic term, which describes the elongation of the polymer due to the external force. In the expression above, the enthalpic response is described as a linear Hookian spring.Several approximations have been put forward, dependent on the applied external force. For the low-force regime (F < about 10 pN), the following interpolation formula was derived:

F P k B T = 1 4 ( 1 x L 0 + F K 0 ) 2 1 4 + x L 0 F K 0 {\displaystyle {\frac {FP}{k_{B}T}}={\frac {1}{4}}\left(1-{\frac {x}{L_{0}}}+{\frac {F}{K_{0}}}\right)^{-2}-{\frac {1}{4}}+{\frac {x}{L_{0}}}-{\frac {F}{K_{0}}}} .

For the higher-force regime, where the polymer is significantly extended, the following approximation is valid:

x = L 0 ( 1 1 2 ( k B T F P ) 1 / 2 + F K 0 ) {\displaystyle x=L_{0}\left(1-{\frac {1}{2}}\left({\frac {k_{B}T}{FP}}\right)^{1/2}+{\frac {F}{K_{0}}}\right)} .

A typical value for the stretch modulus of double-stranded DNA is around 1000 pN and 45 nm for the persistence length.

相关

  • 鬼城鬼镇(英语:Ghost town),又称鬼城,是指一整个因为经济、环境种种因素,而被荒废、放弃居住的城镇。在美国西部与西伯利亚存在许多鬼城。中文有“废墟”一词相当接近鬼城的说法,但废墟
  • 梁伯强梁伯强(1899年2月1日-1968年11月28日),广东梅县人,中国病理学家、中国病理学奠基人之一。其父为梁邵勤,6岁丧母。1922年毕业于同济大学医学院,毕业后留在医学院任助教。因教学水平
  • 包装怒包装怒(英语:Wrap rage或package rage)也称开箱怒,指很难打开产品包装时所带来的高水平愤怒与挫折感,尤其常见于一些热封塑料的吸塑包装(英语:Blister pack)和蛤壳(英语:Clamshell (co
  • 罗布斯塔罗布斯塔咖啡(Robusta coffee)是指由中果咖啡果制成的咖啡豆。罗布斯塔咖啡原产地是漠南非洲的中部和西部。它易于照看,有更高的产量,咖啡因几乎是两倍,有更多抗氧化剂,比小果咖啡
  • 白山山脉国家森林白山山脉国家森林(英语:White Mountain National Forest,WMNF)是一个位于美国东北部白山山脉的国家森林。它成立于1918年,但联邦的土地采购已经于1914年开始。它的总面积为750,85
  • 奥怀希县奥怀希县(英语:Owyhee County)是美国爱达荷州西南部的一个县,西邻俄勒冈州,南邻内华达州,面积19,934平方公里,位于博伊西都会区(英语:Boise metropolitan area)内。根据2010年人口普查
  • 艾丽查·奥若什科娃艾丽查·奥若什科娃(又译艾丽查·奥热什科娃,波兰语:Eliza Orzeszkowa,1841年6月6日-1910年5月18日),波兰小说家,代表作《涅曼河畔》被认为是19世纪晚期波兰社会的全景画卷。艾丽查
  • 格格翼龙属格格翼龙属(属名:)是翼龙目梳颌翼龙科的一属,化石发现于中国辽宁省北票市的义县组,地质年代为白垩纪早期。2007年,古生物学家汪筱林、亚历山大·克尔纳(Alexander Kellner)、周忠和
  • 丁振海丁振海(1941年-),笔名臻海,男,河北石家庄人,中国文艺理论家,红学家,《人民日报》原文艺部主任、海外版总编辑,中国作家协会名誉委员,第十届全国政协委员。
  • 第27届奥斯卡金像奖第27届奥斯卡金像奖表彰1954年最优秀的电影。赢得最佳影片奖的《码头风云》,由山姆·史匹格监制、伊利亚·卡赞执导。它有十二项提名和八项获奖,与另外两出电影《乱世佳人》(19