蠕虫链模型

✍ dations ◷ 2024-12-27 12:50:29 #高分子化合物,生物物理学,高分子物理学

蠕虫链模型(worm-like chain,WLC)是聚合物物理学中用来阐释半弹性聚合物特性的模型。是Kratky(英语:Otto Kratky)-Porod(英语:Günther Porod)模型的后续版本。

蠕虫链理论模型假设存在一根连续且具弹性的均质棒状物。与自由连接链(英语:Ideal chain)不同的是,他们的弹性仅在独立片段。蠕虫理论特别适用于较坚硬的聚合物,因为此种聚合物的片段拥有一种协同性,大致上会指向同一个方向。依据此理论,在室温下,聚合物的构型会圆滑地弯曲;再绝对零度下( T = 0 {\displaystyle T=0} K),ˋ聚合物则会呈现坚硬的棍状构型。

对于长度 l {\displaystyle l} 的聚合物,将聚合物的路径参数化为 s ( 0 , l ) {\displaystyle s\in (0,l)} 。令 t ^ ( s ) {\displaystyle {\hat {t}}(s)} 为该链再 s {\displaystyle s} 时的单位切线参数,且 r ( s ) {\displaystyle {\vec {r}}(s)} 为该链的位置向量。

得出:

由上可推知此模型的方向相关函数(英语:correlation function)(correlation function)遵守指数衰减:

P {\displaystyle P} 为聚合物的持久长度,即聚合物平均长度的平方:

R 2 = R R = 0 l t ^ ( s ) d s 0 l t ^ ( s ) d s = 0 l d s 0 l t ^ ( s ) t ^ ( s ) d s = 0 l d s 0 l e | s s | / P d s R 2 = 2 P l {\displaystyle \langle R^{2}\rangle =\langle {\vec {R}}\cdot {\vec {R}}\rangle =\left\langle \int _{0}^{l}{\hat {t}}(s)ds\cdot \int _{0}^{l}{\hat {t}}(s')ds'\right\rangle =\int _{0}^{l}ds\int _{0}^{l}\langle {\hat {t}}(s)\cdot {\hat {t}}(s')\rangle ds'=\int _{0}^{l}ds\int _{0}^{l}e^{-\left|s-s'\right|/P}ds'\langle R^{2}\rangle =2Pl\left}

蠕虫链理论应用于一些重要的生物性聚合物,包含:

在室温下,聚合物两端的距离会远比原长度 L 0 {\displaystyle L_{0}} 还短。因为热波动会造成聚合物蜷曲,使聚合物任意排列。

Upon stretching the polymer, the accessible spectrum of fluctuations reduces, which causes an entropic force against the external elongation.This entropic force can be estimated by considering the entropic Hamiltonian:

H = H e n t r o p i c + H e x t e r n a l = 1 2 k B T 0 L 0 P ( 2 r ( s ) s 2 ) 2 d s x F {\displaystyle H=H_{\rm {entropic}}+H_{\rm {external}}={\frac {1}{2}}k_{B}T\int _{0}^{L_{0}}P\cdot \left({\frac {\partial ^{2}{\vec {r}}(s)}{\partial s^{2}}}\right)^{2}ds-xF} .

Here, the contour length is represented by L 0 {\displaystyle L_{0}} , the persistence length by P {\displaystyle P} , the extension and external force is represented by extension x F {\displaystyle xF} .

Laboratory tools such as atomic force microscopy (AFM) and optical tweezers have been used to characterize the force-dependent stretching behavior of the polymers listed above. An interpolation formula that approximates the force-extension behavior is (J. F. Marko, E. D. Siggia (1995)):


where k B {\displaystyle k_{B}} is the Boltzmann constant and T {\displaystyle T} is the absolute temperature.

When extending most polymers, their elastic response cannot be neglected. As an example, for the well-studied case of stretching DNA in physiological conditions (near neutral pH, ionic strength approximately 100 mM) at room temperature, the compliance of the DNA along the contour must be accounted for. This enthalpic compliance is accounted for the material parameter K 0 {\displaystyle K_{0}} , the stretch modulus. For significantly extended polymers, this yields the following Hamiltonian:

H = H e n t r o p i c + H e n t h a l p i c + H e x t e r n a l = 1 2 k B T 0 L 0 P ( r ( s ) s ) 2 d s + 1 2 K 0 L 0 x 2 x F {\displaystyle H=H_{\rm {entropic}}+H_{\rm {enthalpic}}+H_{\rm {external}}={\frac {1}{2}}k_{B}T\int _{0}^{L_{0}}P\cdot \left({\frac {\partial {\vec {r}}(s)}{\partial s}}\right)^{2}ds+{\frac {1}{2}}{\frac {K_{0}}{L_{0}}}x^{2}-xF} ,

with L 0 {\displaystyle L_{0}} , the contour length, P {\displaystyle P} , the persistence length, x {\displaystyle x} the extension and F {\displaystyle F} external force. This expression takes into account both the entropic term, which regards changes in the polymer conformation, and the enthalpic term, which describes the elongation of the polymer due to the external force. In the expression above, the enthalpic response is described as a linear Hookian spring.Several approximations have been put forward, dependent on the applied external force. For the low-force regime (F < about 10 pN), the following interpolation formula was derived:

F P k B T = 1 4 ( 1 x L 0 + F K 0 ) 2 1 4 + x L 0 F K 0 {\displaystyle {\frac {FP}{k_{B}T}}={\frac {1}{4}}\left(1-{\frac {x}{L_{0}}}+{\frac {F}{K_{0}}}\right)^{-2}-{\frac {1}{4}}+{\frac {x}{L_{0}}}-{\frac {F}{K_{0}}}} .

For the higher-force regime, where the polymer is significantly extended, the following approximation is valid:

x = L 0 ( 1 1 2 ( k B T F P ) 1 / 2 + F K 0 ) {\displaystyle x=L_{0}\left(1-{\frac {1}{2}}\left({\frac {k_{B}T}{FP}}\right)^{1/2}+{\frac {F}{K_{0}}}\right)} .

A typical value for the stretch modulus of double-stranded DNA is around 1000 pN and 45 nm for the persistence length.

相关

  • 子宫肉瘤子宫肉瘤(英语:uterine sarcoma),是一类子宫的平滑肌或结缔组织病变引起的一种恶性转移性肿瘤。它的子类包括有平滑肌肉瘤、子宫内膜间质肉瘤(英语:endometrial stromal sarcomas)
  • 路易吉·路卡·卡瓦利-斯福扎路易吉·路卡·卡瓦利-斯福扎(意大利语:Luigi Luca Cavalli-Sforza,1922年1月25日-2018年8月31日),意大利群体遗传学家,中央研究院名誉院士。1944年从帕维亚大学医学系毕业后,前往剑
  • 骨灰骨灰(bone ash)一般指遗体于火葬后所剩余的遗骸。遗骸在火化后只会留下白色的骨骸,若再加以研磨,会是白色粉末,成分主要是磷酸钙。磷酸钙常见于肥料、润饰化合物和制陶业(骨瓷)中。
  • 楯齿龙目楯齿龙目(Placodontia)又名盾齿龙目、齿龙目,意思为"块状的牙齿",是群生存于三叠纪的海生爬行动物,在三叠纪-侏罗纪灭绝事件中灭绝。一般认为它们跟鳍龙超目有接近亲缘关系,而鳍龙类
  • 中华人民共和国食品安全中华人民共和国食品安全是中华人民共和国(以下简称中国)日益关注的一个议题。中国的主要农作物有水稻、玉米、小麦、大豆、棉花以及苹果等,而主要畜产品有猪肉、牛肉、牛奶以及
  • 瓦尔加斯悲剧瓦尔加斯悲剧(英语:Vargas tragedy),于1999年12月14日在委内瑞拉瓦尔加斯州发生的一场暴雨洪水和泥石流。这场悲剧导致数万人丧生,多达百分之十的瓦尔加斯居民死亡。该事件亦导致
  • 狄肯盘唇鲿狄肯盘唇鲿为辐鳍鱼纲鲇形目倒立鲇科的其中一种,为热带淡水鱼,分布于非洲肯亚及坦桑尼亚淡水流域,体长可达7公分,栖息在底中层水域,生活习性不明。 维基物种中有关狄肯盘唇鲿的数
  • 青春残酷物语 (电影)《青春残酷物语》(日语:青春残酷物語),1960年日本电影,片长96分钟,导演大岛渚。这是他的第二部作品,此片以新颖的手法表达了强烈的反体制思想和对“性”与“暴力”独特见解,作品严肃
  • 第56届柏林国际电影节第56届柏林国际电影节()于德国时间2006年2月9日到2月19日举行。开幕片为马可·伊凡斯(英语:Marc Evans)导演的《雪季过客》,评审团主席则由英国女演员夏洛特·兰普林担任。
  • 藤冈贵裕藤冈贵裕(日语:藤岡 貴裕/ふじおか たかひろ ,1989年7月17日-)是日本群马县北群马郡出身的职业棒球选手,司职投手,曾效力于日本职棒千叶罗德海洋、北海道日本火腿斗士和读卖巨人。