蠕虫链模型

✍ dations ◷ 2025-05-19 19:41:08 #高分子化合物,生物物理学,高分子物理学

蠕虫链模型(worm-like chain,WLC)是聚合物物理学中用来阐释半弹性聚合物特性的模型。是Kratky(英语:Otto Kratky)-Porod(英语:Günther Porod)模型的后续版本。

蠕虫链理论模型假设存在一根连续且具弹性的均质棒状物。与自由连接链(英语:Ideal chain)不同的是,他们的弹性仅在独立片段。蠕虫理论特别适用于较坚硬的聚合物,因为此种聚合物的片段拥有一种协同性,大致上会指向同一个方向。依据此理论,在室温下,聚合物的构型会圆滑地弯曲;再绝对零度下( T = 0 {\displaystyle T=0} K),ˋ聚合物则会呈现坚硬的棍状构型。

对于长度 l {\displaystyle l} 的聚合物,将聚合物的路径参数化为 s ( 0 , l ) {\displaystyle s\in (0,l)} 。令 t ^ ( s ) {\displaystyle {\hat {t}}(s)} 为该链再 s {\displaystyle s} 时的单位切线参数,且 r ( s ) {\displaystyle {\vec {r}}(s)} 为该链的位置向量。

得出:

由上可推知此模型的方向相关函数(英语:correlation function)(correlation function)遵守指数衰减:

P {\displaystyle P} 为聚合物的持久长度,即聚合物平均长度的平方:

R 2 = R R = 0 l t ^ ( s ) d s 0 l t ^ ( s ) d s = 0 l d s 0 l t ^ ( s ) t ^ ( s ) d s = 0 l d s 0 l e | s s | / P d s R 2 = 2 P l {\displaystyle \langle R^{2}\rangle =\langle {\vec {R}}\cdot {\vec {R}}\rangle =\left\langle \int _{0}^{l}{\hat {t}}(s)ds\cdot \int _{0}^{l}{\hat {t}}(s')ds'\right\rangle =\int _{0}^{l}ds\int _{0}^{l}\langle {\hat {t}}(s)\cdot {\hat {t}}(s')\rangle ds'=\int _{0}^{l}ds\int _{0}^{l}e^{-\left|s-s'\right|/P}ds'\langle R^{2}\rangle =2Pl\left}

蠕虫链理论应用于一些重要的生物性聚合物,包含:

在室温下,聚合物两端的距离会远比原长度 L 0 {\displaystyle L_{0}} 还短。因为热波动会造成聚合物蜷曲,使聚合物任意排列。

Upon stretching the polymer, the accessible spectrum of fluctuations reduces, which causes an entropic force against the external elongation.This entropic force can be estimated by considering the entropic Hamiltonian:

H = H e n t r o p i c + H e x t e r n a l = 1 2 k B T 0 L 0 P ( 2 r ( s ) s 2 ) 2 d s x F {\displaystyle H=H_{\rm {entropic}}+H_{\rm {external}}={\frac {1}{2}}k_{B}T\int _{0}^{L_{0}}P\cdot \left({\frac {\partial ^{2}{\vec {r}}(s)}{\partial s^{2}}}\right)^{2}ds-xF} .

Here, the contour length is represented by L 0 {\displaystyle L_{0}} , the persistence length by P {\displaystyle P} , the extension and external force is represented by extension x F {\displaystyle xF} .

Laboratory tools such as atomic force microscopy (AFM) and optical tweezers have been used to characterize the force-dependent stretching behavior of the polymers listed above. An interpolation formula that approximates the force-extension behavior is (J. F. Marko, E. D. Siggia (1995)):


where k B {\displaystyle k_{B}} is the Boltzmann constant and T {\displaystyle T} is the absolute temperature.

When extending most polymers, their elastic response cannot be neglected. As an example, for the well-studied case of stretching DNA in physiological conditions (near neutral pH, ionic strength approximately 100 mM) at room temperature, the compliance of the DNA along the contour must be accounted for. This enthalpic compliance is accounted for the material parameter K 0 {\displaystyle K_{0}} , the stretch modulus. For significantly extended polymers, this yields the following Hamiltonian:

H = H e n t r o p i c + H e n t h a l p i c + H e x t e r n a l = 1 2 k B T 0 L 0 P ( r ( s ) s ) 2 d s + 1 2 K 0 L 0 x 2 x F {\displaystyle H=H_{\rm {entropic}}+H_{\rm {enthalpic}}+H_{\rm {external}}={\frac {1}{2}}k_{B}T\int _{0}^{L_{0}}P\cdot \left({\frac {\partial {\vec {r}}(s)}{\partial s}}\right)^{2}ds+{\frac {1}{2}}{\frac {K_{0}}{L_{0}}}x^{2}-xF} ,

with L 0 {\displaystyle L_{0}} , the contour length, P {\displaystyle P} , the persistence length, x {\displaystyle x} the extension and F {\displaystyle F} external force. This expression takes into account both the entropic term, which regards changes in the polymer conformation, and the enthalpic term, which describes the elongation of the polymer due to the external force. In the expression above, the enthalpic response is described as a linear Hookian spring.Several approximations have been put forward, dependent on the applied external force. For the low-force regime (F < about 10 pN), the following interpolation formula was derived:

F P k B T = 1 4 ( 1 x L 0 + F K 0 ) 2 1 4 + x L 0 F K 0 {\displaystyle {\frac {FP}{k_{B}T}}={\frac {1}{4}}\left(1-{\frac {x}{L_{0}}}+{\frac {F}{K_{0}}}\right)^{-2}-{\frac {1}{4}}+{\frac {x}{L_{0}}}-{\frac {F}{K_{0}}}} .

For the higher-force regime, where the polymer is significantly extended, the following approximation is valid:

x = L 0 ( 1 1 2 ( k B T F P ) 1 / 2 + F K 0 ) {\displaystyle x=L_{0}\left(1-{\frac {1}{2}}\left({\frac {k_{B}T}{FP}}\right)^{1/2}+{\frac {F}{K_{0}}}\right)} .

A typical value for the stretch modulus of double-stranded DNA is around 1000 pN and 45 nm for the persistence length.

相关

  • 小漠镇小漠镇,是中华人民共和国广东省汕尾市海丰县下辖的一个乡镇级行政单位。现为深汕合作区一部分,由深圳市管理。小漠镇下辖以下地区:旺官社区居民委、旺渔村、东旺村、南香村、元
  • 新知客新知客是一本面向大众的科学生活期刊。其前身是1980年创办于天津的科普期刊《科学与生活》,在20世纪80年代的中国大陆地区影响极大,发行量一度接近200万份。进入21世纪后,其影
  • 如圣散如圣散属于中医方剂的经产剂,出自医方集解,由3味中药组成,是用以治疗崩漏的常用方剂。症状常见崩漏不止。《医方集解》将本方归于足厥阴药。本方的组成包括乌梅、棕榈、黑姜 。
  • 瘿椒树瘿椒树(学名:),为省沽油科瘿椒树属下的一种植物,为中国独有。
  • 董泽董泽(1888年-1972年),字雨仓,云南云龙人,白族。曾于东京同文书院、美国哥伦比亚大学攻读政治、经济及教育各科,并于1920年取得哥伦比亚大学硕士学位。董泽是云南大学(原名东陆大学)的
  • 山西省图书馆山西省图书馆(Shanxi Library)是山西省规模最大的公共图书馆,始建于清宣统元年(1909年),也是国内为数不多的百年老馆之一。山西省图书馆始建于1909年10月9日,当时名为山西教育图书
  • 达尔拉沃恩达尔拉沃恩(Darlawn),是印度米佐拉姆邦Aizawl县的一个城镇。总人口3859(2001年)。该地2001年总人口3859人,其中男性1954人,女性1905人;0—6岁人口489人,其中男268人,女221人;识字率82.6
  • 美国联盟历年冠军列表美国联盟(American League,简称为美联,AL),是大联盟的两个联盟之一。最早(1968年以前)的美联冠军是由季赛胜率最高的队伍获得,再与国联冠军进行对战,称为世界大赛。自1969年起,两个联
  • 龙启太后龙启太后,本名黄惠姑,又名黄厥,中国五代十国之闽国开国皇帝王延钧的母亲,太祖王审知的侧室夫人。泉州人,威武节度推官黄滔的族女,父亲工部侍郎黄讷裕。唐明宗李嗣源封她为鲁国夫人
  • 超国界法与政策 (期刊)超国界法与政策期刊,建立于1991年的学术交流论坛,探讨国际社会的法律发展。收录的国际法文章主题多样,包括人权、比较法、美国外交政策等等。