蠕虫链模型

✍ dations ◷ 2025-10-16 09:40:53 #高分子化合物,生物物理学,高分子物理学

蠕虫链模型(worm-like chain,WLC)是聚合物物理学中用来阐释半弹性聚合物特性的模型。是Kratky(英语:Otto Kratky)-Porod(英语:Günther Porod)模型的后续版本。

蠕虫链理论模型假设存在一根连续且具弹性的均质棒状物。与自由连接链(英语:Ideal chain)不同的是,他们的弹性仅在独立片段。蠕虫理论特别适用于较坚硬的聚合物,因为此种聚合物的片段拥有一种协同性,大致上会指向同一个方向。依据此理论,在室温下,聚合物的构型会圆滑地弯曲;再绝对零度下( T = 0 {\displaystyle T=0} K),ˋ聚合物则会呈现坚硬的棍状构型。

对于长度 l {\displaystyle l} 的聚合物,将聚合物的路径参数化为 s ( 0 , l ) {\displaystyle s\in (0,l)} 。令 t ^ ( s ) {\displaystyle {\hat {t}}(s)} 为该链再 s {\displaystyle s} 时的单位切线参数,且 r ( s ) {\displaystyle {\vec {r}}(s)} 为该链的位置向量。

得出:

由上可推知此模型的方向相关函数(英语:correlation function)(correlation function)遵守指数衰减:

P {\displaystyle P} 为聚合物的持久长度,即聚合物平均长度的平方:

R 2 = R R = 0 l t ^ ( s ) d s 0 l t ^ ( s ) d s = 0 l d s 0 l t ^ ( s ) t ^ ( s ) d s = 0 l d s 0 l e | s s | / P d s R 2 = 2 P l {\displaystyle \langle R^{2}\rangle =\langle {\vec {R}}\cdot {\vec {R}}\rangle =\left\langle \int _{0}^{l}{\hat {t}}(s)ds\cdot \int _{0}^{l}{\hat {t}}(s')ds'\right\rangle =\int _{0}^{l}ds\int _{0}^{l}\langle {\hat {t}}(s)\cdot {\hat {t}}(s')\rangle ds'=\int _{0}^{l}ds\int _{0}^{l}e^{-\left|s-s'\right|/P}ds'\langle R^{2}\rangle =2Pl\left}

蠕虫链理论应用于一些重要的生物性聚合物,包含:

在室温下,聚合物两端的距离会远比原长度 L 0 {\displaystyle L_{0}} 还短。因为热波动会造成聚合物蜷曲,使聚合物任意排列。

Upon stretching the polymer, the accessible spectrum of fluctuations reduces, which causes an entropic force against the external elongation.This entropic force can be estimated by considering the entropic Hamiltonian:

H = H e n t r o p i c + H e x t e r n a l = 1 2 k B T 0 L 0 P ( 2 r ( s ) s 2 ) 2 d s x F {\displaystyle H=H_{\rm {entropic}}+H_{\rm {external}}={\frac {1}{2}}k_{B}T\int _{0}^{L_{0}}P\cdot \left({\frac {\partial ^{2}{\vec {r}}(s)}{\partial s^{2}}}\right)^{2}ds-xF} .

Here, the contour length is represented by L 0 {\displaystyle L_{0}} , the persistence length by P {\displaystyle P} , the extension and external force is represented by extension x F {\displaystyle xF} .

Laboratory tools such as atomic force microscopy (AFM) and optical tweezers have been used to characterize the force-dependent stretching behavior of the polymers listed above. An interpolation formula that approximates the force-extension behavior is (J. F. Marko, E. D. Siggia (1995)):


where k B {\displaystyle k_{B}} is the Boltzmann constant and T {\displaystyle T} is the absolute temperature.

When extending most polymers, their elastic response cannot be neglected. As an example, for the well-studied case of stretching DNA in physiological conditions (near neutral pH, ionic strength approximately 100 mM) at room temperature, the compliance of the DNA along the contour must be accounted for. This enthalpic compliance is accounted for the material parameter K 0 {\displaystyle K_{0}} , the stretch modulus. For significantly extended polymers, this yields the following Hamiltonian:

H = H e n t r o p i c + H e n t h a l p i c + H e x t e r n a l = 1 2 k B T 0 L 0 P ( r ( s ) s ) 2 d s + 1 2 K 0 L 0 x 2 x F {\displaystyle H=H_{\rm {entropic}}+H_{\rm {enthalpic}}+H_{\rm {external}}={\frac {1}{2}}k_{B}T\int _{0}^{L_{0}}P\cdot \left({\frac {\partial {\vec {r}}(s)}{\partial s}}\right)^{2}ds+{\frac {1}{2}}{\frac {K_{0}}{L_{0}}}x^{2}-xF} ,

with L 0 {\displaystyle L_{0}} , the contour length, P {\displaystyle P} , the persistence length, x {\displaystyle x} the extension and F {\displaystyle F} external force. This expression takes into account both the entropic term, which regards changes in the polymer conformation, and the enthalpic term, which describes the elongation of the polymer due to the external force. In the expression above, the enthalpic response is described as a linear Hookian spring.Several approximations have been put forward, dependent on the applied external force. For the low-force regime (F < about 10 pN), the following interpolation formula was derived:

F P k B T = 1 4 ( 1 x L 0 + F K 0 ) 2 1 4 + x L 0 F K 0 {\displaystyle {\frac {FP}{k_{B}T}}={\frac {1}{4}}\left(1-{\frac {x}{L_{0}}}+{\frac {F}{K_{0}}}\right)^{-2}-{\frac {1}{4}}+{\frac {x}{L_{0}}}-{\frac {F}{K_{0}}}} .

For the higher-force regime, where the polymer is significantly extended, the following approximation is valid:

x = L 0 ( 1 1 2 ( k B T F P ) 1 / 2 + F K 0 ) {\displaystyle x=L_{0}\left(1-{\frac {1}{2}}\left({\frac {k_{B}T}{FP}}\right)^{1/2}+{\frac {F}{K_{0}}}\right)} .

A typical value for the stretch modulus of double-stranded DNA is around 1000 pN and 45 nm for the persistence length.

相关

  • 火卫一火卫一,又称为“福波斯”(英语:Phobos;希腊语:Φόβος;系统名称:Mars I),是火星的两颗自然卫星中,距离火星较近且较大的一颗,平均半径为11.1km,是另一颗卫星火卫二的1.8倍。火卫一的
  • 光微粒说光通常指的是人类眼睛可以见的电磁波(可见光),视知觉就是对于可见光的知觉。可见光只是电磁波谱上的某一段频谱,一般是定义为波长介于400至700奈(纳)米(nm)之间的电磁波,也就是波长比
  • 板南线80km/h(营运最高速度) 90km/h(车辆最高速度)台北捷运板南线电联车 三节车厢为一组,.mw-parser-output .RMbox{box-shad
  • 2019冠状病毒病法属圣马丁疫情2019冠状病毒病法属圣马丁疫情,介绍在2019冠状病毒病疫情中,在法属圣马丁发生的情况。2019冠状病毒病于2020年3月1日波及法属圣马丁。 3月1日,一对来自圣马丁岛法属部分的夫妇
  • 数字艺术数字艺术作品是通过数码设备创建或加工处理过的艺术作品,包括但不限于图像、影像、文字、音频或以其它形式存在的数字艺术作品。相对于传统艺术作品来说,它在表现形式更加丰富
  • 保险应用架构保险应用架构(英语:),保险信息系统的应用体系架构,分为、、,按照实现方式可分为面向对象的保险应用架构和程序型保险应用架构。
  • 亨里希·格里戈里耶维奇·雅戈达亨里希·格里戈里耶维奇·雅戈达(俄语:Ге́нрих Григо́рьевич Яго́да;1891年11月7日-1938年3月15日),苏联政治人物,他在1934年至1936年期间担任内务人民委
  • 基于时间的一次性密码算法基于时间的一次性密码算法(TOTP)是一种根据预共享的密钥与当前时间计算一次性密码的算法。它已被互联网工程任务组接纳为RFC 6238标准,成为主动开放认证(英语:Initiative For Ope
  • 韩东 (诗人)韩东(1961年-),江苏南京人,中国现代诗人。1982年毕业于山东大学哲学系。在此期间韩东开始诗歌创作。1985年与于坚等创立了诗刊《他们》。韩东的代表作有《有关大雁塔》、《你见过
  • 齐藤瑞己齐藤瑞己(日语:斉藤 瑞己,1996年-’是日本男子有氧体操运动员。