蠕虫链模型

✍ dations ◷ 2025-08-22 07:46:33 #高分子化合物,生物物理学,高分子物理学

蠕虫链模型(worm-like chain,WLC)是聚合物物理学中用来阐释半弹性聚合物特性的模型。是Kratky(英语:Otto Kratky)-Porod(英语:Günther Porod)模型的后续版本。

蠕虫链理论模型假设存在一根连续且具弹性的均质棒状物。与自由连接链(英语:Ideal chain)不同的是,他们的弹性仅在独立片段。蠕虫理论特别适用于较坚硬的聚合物,因为此种聚合物的片段拥有一种协同性,大致上会指向同一个方向。依据此理论,在室温下,聚合物的构型会圆滑地弯曲;再绝对零度下( T = 0 {\displaystyle T=0} K),ˋ聚合物则会呈现坚硬的棍状构型。

对于长度 l {\displaystyle l} 的聚合物,将聚合物的路径参数化为 s ( 0 , l ) {\displaystyle s\in (0,l)} 。令 t ^ ( s ) {\displaystyle {\hat {t}}(s)} 为该链再 s {\displaystyle s} 时的单位切线参数,且 r ( s ) {\displaystyle {\vec {r}}(s)} 为该链的位置向量。

得出:

由上可推知此模型的方向相关函数(英语:correlation function)(correlation function)遵守指数衰减:

P {\displaystyle P} 为聚合物的持久长度,即聚合物平均长度的平方:

R 2 = R R = 0 l t ^ ( s ) d s 0 l t ^ ( s ) d s = 0 l d s 0 l t ^ ( s ) t ^ ( s ) d s = 0 l d s 0 l e | s s | / P d s R 2 = 2 P l {\displaystyle \langle R^{2}\rangle =\langle {\vec {R}}\cdot {\vec {R}}\rangle =\left\langle \int _{0}^{l}{\hat {t}}(s)ds\cdot \int _{0}^{l}{\hat {t}}(s')ds'\right\rangle =\int _{0}^{l}ds\int _{0}^{l}\langle {\hat {t}}(s)\cdot {\hat {t}}(s')\rangle ds'=\int _{0}^{l}ds\int _{0}^{l}e^{-\left|s-s'\right|/P}ds'\langle R^{2}\rangle =2Pl\left}

蠕虫链理论应用于一些重要的生物性聚合物,包含:

在室温下,聚合物两端的距离会远比原长度 L 0 {\displaystyle L_{0}} 还短。因为热波动会造成聚合物蜷曲,使聚合物任意排列。

Upon stretching the polymer, the accessible spectrum of fluctuations reduces, which causes an entropic force against the external elongation.This entropic force can be estimated by considering the entropic Hamiltonian:

H = H e n t r o p i c + H e x t e r n a l = 1 2 k B T 0 L 0 P ( 2 r ( s ) s 2 ) 2 d s x F {\displaystyle H=H_{\rm {entropic}}+H_{\rm {external}}={\frac {1}{2}}k_{B}T\int _{0}^{L_{0}}P\cdot \left({\frac {\partial ^{2}{\vec {r}}(s)}{\partial s^{2}}}\right)^{2}ds-xF} .

Here, the contour length is represented by L 0 {\displaystyle L_{0}} , the persistence length by P {\displaystyle P} , the extension and external force is represented by extension x F {\displaystyle xF} .

Laboratory tools such as atomic force microscopy (AFM) and optical tweezers have been used to characterize the force-dependent stretching behavior of the polymers listed above. An interpolation formula that approximates the force-extension behavior is (J. F. Marko, E. D. Siggia (1995)):


where k B {\displaystyle k_{B}} is the Boltzmann constant and T {\displaystyle T} is the absolute temperature.

When extending most polymers, their elastic response cannot be neglected. As an example, for the well-studied case of stretching DNA in physiological conditions (near neutral pH, ionic strength approximately 100 mM) at room temperature, the compliance of the DNA along the contour must be accounted for. This enthalpic compliance is accounted for the material parameter K 0 {\displaystyle K_{0}} , the stretch modulus. For significantly extended polymers, this yields the following Hamiltonian:

H = H e n t r o p i c + H e n t h a l p i c + H e x t e r n a l = 1 2 k B T 0 L 0 P ( r ( s ) s ) 2 d s + 1 2 K 0 L 0 x 2 x F {\displaystyle H=H_{\rm {entropic}}+H_{\rm {enthalpic}}+H_{\rm {external}}={\frac {1}{2}}k_{B}T\int _{0}^{L_{0}}P\cdot \left({\frac {\partial {\vec {r}}(s)}{\partial s}}\right)^{2}ds+{\frac {1}{2}}{\frac {K_{0}}{L_{0}}}x^{2}-xF} ,

with L 0 {\displaystyle L_{0}} , the contour length, P {\displaystyle P} , the persistence length, x {\displaystyle x} the extension and F {\displaystyle F} external force. This expression takes into account both the entropic term, which regards changes in the polymer conformation, and the enthalpic term, which describes the elongation of the polymer due to the external force. In the expression above, the enthalpic response is described as a linear Hookian spring.Several approximations have been put forward, dependent on the applied external force. For the low-force regime (F < about 10 pN), the following interpolation formula was derived:

F P k B T = 1 4 ( 1 x L 0 + F K 0 ) 2 1 4 + x L 0 F K 0 {\displaystyle {\frac {FP}{k_{B}T}}={\frac {1}{4}}\left(1-{\frac {x}{L_{0}}}+{\frac {F}{K_{0}}}\right)^{-2}-{\frac {1}{4}}+{\frac {x}{L_{0}}}-{\frac {F}{K_{0}}}} .

For the higher-force regime, where the polymer is significantly extended, the following approximation is valid:

x = L 0 ( 1 1 2 ( k B T F P ) 1 / 2 + F K 0 ) {\displaystyle x=L_{0}\left(1-{\frac {1}{2}}\left({\frac {k_{B}T}{FP}}\right)^{1/2}+{\frac {F}{K_{0}}}\right)} .

A typical value for the stretch modulus of double-stranded DNA is around 1000 pN and 45 nm for the persistence length.

相关

  • 抑郁性障碍抑郁症,亦称忧郁症,是一类以抑郁心境为主要特点的情感障碍。它主要包括:重度抑郁症、持续性抑郁症、季节性抑郁症。它们的共同表现为:长时间持续的抑郁情绪,并且这种情绪明显超过
  • 印度教印度教是世界主要宗教之一,是南亚次大陆占主导地位的宗教,并包含许多不同的传统。印度教基于一种独有的知识或哲学观点。它包括了婆罗门教的湿婆派、毗湿奴派、沙克达教及其他
  • 科顿·马瑟科顿·马瑟(英语:Cotton Mather;/ˈmæðər/ FRS,1663年2月12日-1728年2月13日)是美洲新英格兰地区的一位清教徒牧师、多产作家、小册子作家(英语:pamphleteer)与意见领袖,他于1681年
  • 明(英语:Ming the clam,约1499年-2006年)是一只北极蛤,截至目前是已知最长寿的多细胞个体动物。最初年龄经推算达到405岁,相当于出生在中国明朝万历年间(1601年),后来更正到507岁,即出
  • Valentin Haüy华伦泰·阿羽依(Valentin Haüy,1745年11月13日-1822年3月19日),法国人,“盲人教育之父”。华伦泰·阿羽依的兄弟勒内·茹斯特·阿羽依,被公认为是现代矿物学的创建者。1784年,华伦
  • 丁烯酮丁烯酮(MVK),结构式CH3COCH=CH2。是最简单的α,β-不饱和酮。无色具有刺激性臭味的挥发性液体。可燃。易溶于水、甲醇、乙醇、乙醚、丙酮、冰醋酸,微溶于烃。与水形成二元共沸物,
  • 罗伯特·亨利·查尔斯罗伯特·亨利·查尔斯(英语:Robert Henry Charles,1855年-1931年),英国著名史学家、神学家、与新约学者。他曾经主持过多本经外书与伪典的英译工作,如以诺书、十二族长遗训。在都柏
  • 蚌埠公交微2路蚌埠公交微2路,是中国安徽省蚌埠市的一条社区巴士线路,使用8米纯电动空调车。由珍珠小区公交车场开往蚌埠南站,由蚌埠市公共交通集团有限公司运营、管理。以下内容均统计自:蚌埠
  • 李昭清李昭清(1931年6月1日-),台湾陶艺家,苗栗县人,师承父亲福州陶师李依五先生。
  • 西奥多·罗斯福第二次总统就职典礼西奥多·罗斯福第二次总统就职典礼于1905年3月4日(星期六)举行,本次就职典礼象征西奥多·罗斯福第二任(也是完整的一任)总统任期的开始,以及查尔斯·W·费尔班克斯唯一一任副