蠕虫链模型

✍ dations ◷ 2025-12-07 12:42:16 #高分子化合物,生物物理学,高分子物理学

蠕虫链模型(worm-like chain,WLC)是聚合物物理学中用来阐释半弹性聚合物特性的模型。是Kratky(英语:Otto Kratky)-Porod(英语:Günther Porod)模型的后续版本。

蠕虫链理论模型假设存在一根连续且具弹性的均质棒状物。与自由连接链(英语:Ideal chain)不同的是,他们的弹性仅在独立片段。蠕虫理论特别适用于较坚硬的聚合物,因为此种聚合物的片段拥有一种协同性,大致上会指向同一个方向。依据此理论,在室温下,聚合物的构型会圆滑地弯曲;再绝对零度下( T = 0 {\displaystyle T=0} K),ˋ聚合物则会呈现坚硬的棍状构型。

对于长度 l {\displaystyle l} 的聚合物,将聚合物的路径参数化为 s ( 0 , l ) {\displaystyle s\in (0,l)} 。令 t ^ ( s ) {\displaystyle {\hat {t}}(s)} 为该链再 s {\displaystyle s} 时的单位切线参数,且 r ( s ) {\displaystyle {\vec {r}}(s)} 为该链的位置向量。

得出:

由上可推知此模型的方向相关函数(英语:correlation function)(correlation function)遵守指数衰减:

P {\displaystyle P} 为聚合物的持久长度,即聚合物平均长度的平方:

R 2 = R R = 0 l t ^ ( s ) d s 0 l t ^ ( s ) d s = 0 l d s 0 l t ^ ( s ) t ^ ( s ) d s = 0 l d s 0 l e | s s | / P d s R 2 = 2 P l {\displaystyle \langle R^{2}\rangle =\langle {\vec {R}}\cdot {\vec {R}}\rangle =\left\langle \int _{0}^{l}{\hat {t}}(s)ds\cdot \int _{0}^{l}{\hat {t}}(s')ds'\right\rangle =\int _{0}^{l}ds\int _{0}^{l}\langle {\hat {t}}(s)\cdot {\hat {t}}(s')\rangle ds'=\int _{0}^{l}ds\int _{0}^{l}e^{-\left|s-s'\right|/P}ds'\langle R^{2}\rangle =2Pl\left}

蠕虫链理论应用于一些重要的生物性聚合物,包含:

在室温下,聚合物两端的距离会远比原长度 L 0 {\displaystyle L_{0}} 还短。因为热波动会造成聚合物蜷曲,使聚合物任意排列。

Upon stretching the polymer, the accessible spectrum of fluctuations reduces, which causes an entropic force against the external elongation.This entropic force can be estimated by considering the entropic Hamiltonian:

H = H e n t r o p i c + H e x t e r n a l = 1 2 k B T 0 L 0 P ( 2 r ( s ) s 2 ) 2 d s x F {\displaystyle H=H_{\rm {entropic}}+H_{\rm {external}}={\frac {1}{2}}k_{B}T\int _{0}^{L_{0}}P\cdot \left({\frac {\partial ^{2}{\vec {r}}(s)}{\partial s^{2}}}\right)^{2}ds-xF} .

Here, the contour length is represented by L 0 {\displaystyle L_{0}} , the persistence length by P {\displaystyle P} , the extension and external force is represented by extension x F {\displaystyle xF} .

Laboratory tools such as atomic force microscopy (AFM) and optical tweezers have been used to characterize the force-dependent stretching behavior of the polymers listed above. An interpolation formula that approximates the force-extension behavior is (J. F. Marko, E. D. Siggia (1995)):


where k B {\displaystyle k_{B}} is the Boltzmann constant and T {\displaystyle T} is the absolute temperature.

When extending most polymers, their elastic response cannot be neglected. As an example, for the well-studied case of stretching DNA in physiological conditions (near neutral pH, ionic strength approximately 100 mM) at room temperature, the compliance of the DNA along the contour must be accounted for. This enthalpic compliance is accounted for the material parameter K 0 {\displaystyle K_{0}} , the stretch modulus. For significantly extended polymers, this yields the following Hamiltonian:

H = H e n t r o p i c + H e n t h a l p i c + H e x t e r n a l = 1 2 k B T 0 L 0 P ( r ( s ) s ) 2 d s + 1 2 K 0 L 0 x 2 x F {\displaystyle H=H_{\rm {entropic}}+H_{\rm {enthalpic}}+H_{\rm {external}}={\frac {1}{2}}k_{B}T\int _{0}^{L_{0}}P\cdot \left({\frac {\partial {\vec {r}}(s)}{\partial s}}\right)^{2}ds+{\frac {1}{2}}{\frac {K_{0}}{L_{0}}}x^{2}-xF} ,

with L 0 {\displaystyle L_{0}} , the contour length, P {\displaystyle P} , the persistence length, x {\displaystyle x} the extension and F {\displaystyle F} external force. This expression takes into account both the entropic term, which regards changes in the polymer conformation, and the enthalpic term, which describes the elongation of the polymer due to the external force. In the expression above, the enthalpic response is described as a linear Hookian spring.Several approximations have been put forward, dependent on the applied external force. For the low-force regime (F < about 10 pN), the following interpolation formula was derived:

F P k B T = 1 4 ( 1 x L 0 + F K 0 ) 2 1 4 + x L 0 F K 0 {\displaystyle {\frac {FP}{k_{B}T}}={\frac {1}{4}}\left(1-{\frac {x}{L_{0}}}+{\frac {F}{K_{0}}}\right)^{-2}-{\frac {1}{4}}+{\frac {x}{L_{0}}}-{\frac {F}{K_{0}}}} .

For the higher-force regime, where the polymer is significantly extended, the following approximation is valid:

x = L 0 ( 1 1 2 ( k B T F P ) 1 / 2 + F K 0 ) {\displaystyle x=L_{0}\left(1-{\frac {1}{2}}\left({\frac {k_{B}T}{FP}}\right)^{1/2}+{\frac {F}{K_{0}}}\right)} .

A typical value for the stretch modulus of double-stranded DNA is around 1000 pN and 45 nm for the persistence length.

相关

  • 半乳糖半乳糖(galactose、简称:gal,分子式:CH2OH(CHOH)4CHO, Jmol 立体图)是单糖的一种,可在奶制品或甜菜中找到。因它含有热量,它也会被用作营养增甜剂。半乳糖与葡萄糖是同分异构物,另一
  • 法国电力公司法国电力公司(法语:Électricité de France S.A.,缩写: EDF)是法国的公用电力公司,由法国国家拥有大部分。总部设在法国巴黎,在2010年它有€652亿的收入,法国电力公司的经营120+ G
  • 芒果杧果属(学名:Mangifera)常称芒果属,是漆树科中开花植物的一种。它包含大约69个物种,其中最着名的是普通芒果(Mangifera indica)。多样性的中心位于亚热带和热带的南亚和东南亚,而印
  • 呼尔查巴图鲁巴图鲁(满语:ᠪᠠᡨᡠᡵᡠ,转写:baturu),有“英雄”、“勇士”之意,为满洲传统封号之一,后来成为清朝时期赏赐有战功之人的封号。因其用来表彰获封之人的武功,故而又有“勇号”之称。
  • 宁龙片宁龙客语,或称客家语宁龙片,是汉藏语系汉语族客家语的一个支系,主要分布在中国江西省东南部。对于客家语的划分一般有两个版本,而两个版本的宁龙片方言点皆不尽相同。中国社科院
  • 舌形贝属见内文舌形贝属(学名:)是舌形贝科下的一个属,俗名海豆芽,模式种是鸭嘴海豆芽()。早在寒武纪中期,舌形贝属动物就已存在。一些生物学家认为舌形贝属生物是一种活化石,因为这一类物种从
  • 横锦水库横锦水库位于中国浙江省东阳市的东阳江上游,是以供水、灌溉、防洪为主,兼有发电功能的大(二)型水库。2000年11月24日东阳市与义乌市签定有偿转让横锦水库部分用水权协议,义乌市一
  • 黄粉蝶亚科黄粉蝶演化支豆粉蝶演化支黄粉蝶亚科(学名:)是鳞翅目粉蝶科中的一个亚科,包含了18个属。娜粉蝶属 历粉蝶属 黄粉蝶属 齐利亚黄粉蝶 露粉蝶属 玕黄粉蝶属 钩粉蝶属 方粉蝶属 菲粉
  • 出口 (舞台剧)《出口》(英语:Rabbit Hole),由大卫·林赛-亚拜尔(英语:David Lindsay-Abaire)撰写的舞台剧。最初委托由南海岸话剧团(英语:South Coast Repertory),2005年于太平洋剧作家节(英语:Pacific
  • 长滨城 (近江国)长滨城(ながはまじょう)是位在滋贺县长滨市的一座平城。羽柴秀吉(丰臣秀吉)筑城之城。别称今滨城(いまはまじょう)。现在的天守是1983年以犬山城、伏见城为模型模拟复元,作为长滨城