非欧几何

✍ dations ◷ 2025-12-04 17:40:57 #非欧几何
非欧几里得几何,简称非欧几何,是多个几何形式系统的统称,与欧几里得几何的差别在于第五公设。古希腊数学家欧几里得的《几何原本》提出了五条公设:长期以来,数学家们发现第五公设和前四个公设比较起来,显得文字叙述冗长,而且也不那么显而易见。有些数学家还注意到欧几里得在《几何原本》一书中直到第29个命题中才用到,而且以后再也没有使用。也就是说,在《几何原本》中可以不依靠第五公设而推出前28个命题。因此,一些数学家提出,第五公设能不能不作为公设,而作为定理?能不能依靠前四个公设来证明第五公设?这就是几何发展史上最著名的,争论了长达两千多年的关于“平行线理论”的讨论。由于证明第五公设的问题始终得不到解决,人们逐渐怀疑证明的路子走的对不对?第五公设到底能不能证明?1820年代,俄国喀山大学教授罗巴切夫斯基在证明第五公设的过程中,他走了另一条路子。他提出了一个和欧氏平行公设相矛盾的命题,用它来代替第五公设,然后与欧氏几何的前四个公设结合成一个公理系统,展开一系列的推理。他认为如果这个系统在基础的推理中出现矛盾,就等于证明了第五公设。此即数学中的反证法。但是,在他极为细致深入的推理过程中,得出了一个又一个在直觉上匪夷所思,但在逻辑上毫无矛盾的命题。最后,罗巴切夫斯基得出两个重要的结论:这种几何学被称为罗巴切夫斯基几何,简称罗氏几何。这是第一个被提出的非欧几何学。从罗氏几何学中,可以得出一个极为重要的、具有普遍意义的结论:逻辑上不矛盾的一些公理都有可能提供一种几何学。几乎在罗巴切夫斯基创立非欧几何学的同时,匈牙利数学家鲍耶·雅诺什也发现了第五公设不可证明和非欧几何学的存在。鲍耶在研究非欧几何学的过程中也遭到了家庭、社会的冷漠对待。他的父亲——数学家鲍耶·法尔卡什(英语:Farkas Bolyai)认为研究第五公设是耗费精力劳而无功的蠢事,劝他放弃这种研究。但鲍耶·雅诺什坚持为发展新的几何学而辛勤工作。终于在1832年,在他的父亲的一本著作里,以附录的形式发表了研究结果。高斯也发现第五公设不能证明,并且研究了非欧几何。但是高斯害怕这种理论会遭到当时教会力量的打击和迫害,不敢公开发表自己的研究成果,只是在书信中向自己的朋友表示了自己的看法,也不敢站出来公开支持罗巴切夫斯基、鲍耶他们的新理论。按几何特性(曲率),现存非欧几何的类型可以概括如下:这三种几何学,都是常曲率空间中的几何学,分别对应曲率为0、负常数和正常数的情况。如果完全去掉第五公设,就得到更加一般化的绝对几何(英语:Absolute geometry)。这种几何不仅可以囊括前面提到的三种几何,而且允许空间的不同位置有不同的曲率。黎曼几何是描述任意维数任意弯曲的绝对几何空间的一种微分解析几何学。一般来讲,非欧几何有广义、狭义、通常意义三个不同含义:

相关

  • 外囊菌亚门外囊菌亚门是子囊菌门中的一个比较原始的分支,本门中其他菌种基本是由其进化出的,最新的分子生物学研究证明其是单源种。外囊菌亚门的种类基本是寄生的,以菌丝或酵母方式寄生在
  • 喉咙咽喉(Throat)是解剖学中咽(学名:Pharynx)和喉(Larynx)的总称,是消化系统和呼吸系统的一部分。Template:Mouth anatomy(英语:Template:Mouth anatomy)
  • 圣卢西亚面积以下资讯是以2018年估计国家领袖国内生产总值(购买力平价) 以下资讯是以2016年估计国内生产总值(国际汇率) 以下资讯是以2016年估计人类发展指数 以下资讯是以2018年估计圣
  • 元数学元数学(英语:Metamathematics),又译为超数学,使用数学技术来研究数学本身的一门学科。一般来说,元数学是一种将数学作为人类意识和文化客体的科学思维或知识。更进一步来说,元数学
  • 系统减敏法系统脱敏法(英语:systematic desensitization),又称为渐进式暴露疗法(graduated exposure therapy),是一种认知行为疗法,由南非心理医生约瑟夫·沃尔普提出。系统脱敏法在临床心理学
  • 厄立特里亚意属厄立特里亚(意大利语:Colonia eritrea) 指1890年起由意大利占领并管治的厄立特里亚殖民地,首府为阿斯马拉。随着苏伊士运河于1869年竣工,环红海地区与欧洲地区的航运迅速地发
  • 瓦莱塔瓦莱塔(Valletta)是地中海岛国马耳他共和国的首都,位于马耳他本岛东部沿岸。面积仅0.55平方公里,2000年估计人口7,048人。1565年的马耳他大围攻之中,统治马耳他的医院骑士团击退
  • 英国首相列表英国首相(英语:Prime Minister of the United Kingdom),是大不列颠及北爱尔兰联合王国(通称英国)的政治领导人及政府首脑。其主要职责是领导执政党和主持内阁会议,从而掌握立法权和
  • 公害公害,是指在追求自身而不顾他人和公共环境的情况下,对社会和个人所造成的破坏或破坏源。 公害成立有三个要件: 一、妨害人民者,如公务人员可能对人民的危害。 二、可经由匿名检
  • 人口集中地区人口集中地区是日本国势调查中设定的统计意义上的地区。其英文名称为“Densely Inhabited District”,简称“DID”。其定义为市区町村区域内,人口密度在4000人/km2以上(平成2年