首页 >
最小上界
✍ dations ◷ 2025-11-23 05:11:59 #最小上界
在数学中,最小上界(英语:supremum,亦称上确界,记为sup E)是序理论的重要概念,在格论和数学分析等领域有广泛应用。给定偏序集合(T,≤),对于S⊆T,S的上确界sup(S)定义为S的所有上界组成的集合的最小元(若有)。即sup(S)满足:上确界也被称为最小上界、lub 或 LUB,在格论中也被称为并,在序理论中S的上确界也被记为
∨
{displaystyle vee }
S。在数学分析中,实数的集合S的上确界或最小上界记为 sup(S),并被定义为大于或等于 S 中所有成员的最小实数。实数的一个重要性质是它的完备性:实数集合的所有非空子集是有上界的就是这个实数集合成员的上确界。这个有理数的集合的上确界是个无理数,这意味着有理数是不完备的。此外,如果我们定义在 S 是空集的时候 sup(S) = −∞ 和在 S 没有上界的时候 sup(S) = +∞ ,则实数的所有集合都在扩展的实数轴上有上确界。如果上确界属于这个集合,则它是这个集合的最大元素。术语极大元在处理实数或任何其他全序集合的时候是同义的。要证明 a = sup(S),必须证明 a 是 S 的上界并且 S 的任何其他上界大于 a;等价地,也可以证明 a 是 S 的上界并且小于 a 的任何数都不是 S 的上界。
相关
- 马鞭草马鞭草(学名:Verbena officinalis)为马鞭草科植物。多年生直立草本植物,基部木质化;四方形茎;倒卵形至长椭圆形的叶子对生,边缘有锯齿,叶片通常3深裂,大裂片复分小裂;穗状花序顶生或腋
- 液滴模型液滴模型是一个关于原子核的模型。魏茨泽克公式将原子核的束缚能,表示成数个项之和。式中有部分常项由实验确定,变数则由理论推导出。一个原子核的束缚能可表示为:其中A为质量
- 总担触手冠动物(拉丁语:Lophophorata),一切具有触手冠(口周围成扇形排列的一圈具纤毛之触手)的无脊椎动物。包括苔藓动物门(Bryozoa)、腕足动物门(Brachiopoda)、帚形动物门(Phoronida)。主
- 老聃老子(?-?),姓李,一说姓老,名耳,字伯阳、外字聃,世人尊称为“老子”,生于东周的楚国苦县厉乡曲仁里(原属陈国,今河南省鹿邑县),师从殷商末臣商容,于东周春秋时周朝守藏室任柱下史。中国春秋时
- 兵变政变(法语:coup d'État, audio 帮助·信息,亦音译为“苦跌打”、“苦迭打”),是指一个国家之中有一部分人通过密谋策划,采取军事叛乱或政治行动,夺取国家政权的行为。如果能成功完
- 波尔兹曼常数玻尔兹曼常数(英语:Boltzmann constant)是有关于温度及能量的一个物理常数,常用 k {\displaystyle k} 或
- 弗拉基米尔·伊万诺维奇·维尔纳茨基弗拉基米尔·伊万诺维奇·维尔纳茨基 (乌克兰语:Володимир Іванович Вернадський、俄语:Влади́мир Ива́нович Верна́д
- 郑寿全郑寿全(1824年-1911年),字钦安,即道光四年生、宣统三年卒,四川邛州人,清末著名伤寒学家,火神派的始祖。郑钦安学医于一代通儒兼名医刘止唐先生。其学术上溯《周易》、《内经》,中得《
- 合欢合欢树(学名:Albizia julibrissin),常简称为“合欢”,也叫“合昏”、“夜合”,主要是因为它的小叶一到夜晚就闭合到一起。此外还有“绒花树”、“鸟绒”、“马缨花”等名称。花瓣
- span style=color: white;公民权/span本文是 欧洲联盟的政治与政府 系列条目之一欧盟公民概念是由马斯特里赫特条约提出的。欧盟公民是对主权国家公民的一种补充,给予他们诸如选举欧洲议会成员,在欧盟境内自由迁徙
