最小上界

✍ dations ◷ 2025-04-02 08:47:16 #最小上界
在数学中,最小上界(英语:supremum,亦称上确界,记为sup E)是序理论的重要概念,在格论和数学分析等领域有广泛应用。给定偏序集合(T,≤),对于S⊆T,S的上确界sup(S)定义为S的所有上界组成的集合的最小元(若有)。即sup(S)满足:上确界也被称为最小上界、lub 或 LUB,在格论中也被称为并,在序理论中S的上确界也被记为 ∨ {displaystyle vee } S。在数学分析中,实数的集合S的上确界或最小上界记为 sup(S),并被定义为大于或等于 S 中所有成员的最小实数。实数的一个重要性质是它的完备性:实数集合的所有非空子集是有上界的就是这个实数集合成员的上确界。这个有理数的集合的上确界是个无理数,这意味着有理数是不完备的。此外,如果我们定义在 S 是空集的时候 sup(S) = −∞ 和在 S 没有上界的时候 sup(S) = +∞ ,则实数的所有集合都在扩展的实数轴上有上确界。如果上确界属于这个集合,则它是这个集合的最大元素。术语极大元在处理实数或任何其他全序集合的时候是同义的。要证明 a = sup(S),必须证明 a 是 S 的上界并且 S 的任何其他上界大于 a;等价地,也可以证明 a 是 S 的上界并且小于 a 的任何数都不是 S 的上界。

相关

  • 文汇报文汇报可指:
  • 黄体成长素黄体化激素(英语:Luteinizing hormone,LH),是一种在脑下垂体前叶合成的荷尔蒙。它的形成是受到促性腺激素释放激素(GnRH)的控制。在女性体内,黄体化激素会刺激卵巢释放卵子,它的周
  • Chicago Tribune《芝加哥论坛报》(英语:Chicago Tribune),美国销量第5高的报纸。它以美国伊利诺伊州芝加哥为基地,是芝加哥地区和美国中西部的主要日报。原为帕特森-麦考密克报系(Patterson-Mccor
  • 单层扁平上皮单层扁平上皮是由形成一连续表面之扁平、形状不规则的细胞所组成,其可被称做人行道状上皮、单层鳞状上皮细胞这个名词是将细胞比喻成鱼的鳞片般。与所有的上皮一样,这种纤细的
  • 近自由电子近似近自由电子近似(英语:Nearly-free electron model)是一种研究电子的近似方法。依据能带理论,可以认为固体内部电子不再束缚在单个原子周围,而是在整个固体内部运动,仅仅受到离子实
  • 福克斯堡福克斯堡(英语:Foxborough)是美国马萨诸塞州诺福克县的一个城镇,东北距波士顿约22英里(35千米),西南距普罗维登斯18英里(29千米),2010年人口普查为16865人。
  • 俄克拉荷马大学俄克拉何马大学(University of Oklahoma),成立于1890年,位于美国俄克拉何马州诺曼,学校采学期制,大学部约有20,000名学生,是美国中南部地区有名的大学,所接受的各方捐赠总额,至2008年
  • 顶级域名顶级域(或顶级域名;英语:Top-level Domain;英文缩写:TLD)是互联网DNS等级之中的最高级的域,它保存于DNS根域的名字空间中。顶级域名是域名的最后一个部分,即是域名最后一点之后的字
  • 铜酸盐铜酸盐(英语:cuprate)是含铜阴离子的盐类,从+1~+4价都是已知的。铜(I)酸盐的一个例子是3−,由氰化亚铜溶于碱金属氰化物溶液得到。铜(III)酸盐和铜(IV)酸盐则需要通过强氧化剂的
  • 尖音库蚊尖音库蚊(学名:Culex pipiens),又称淡色库蚊、家蚊、混杂家蚊或地下家蚊,是蚊科的一种吸血蚊子。这个物种是一些疾病的载体,如日本脑炎、脑膜炎、荨麻疹,在美国,它传播西尼罗河病毒