最小上界

✍ dations ◷ 2025-11-20 21:41:14 #最小上界
在数学中,最小上界(英语:supremum,亦称上确界,记为sup E)是序理论的重要概念,在格论和数学分析等领域有广泛应用。给定偏序集合(T,≤),对于S⊆T,S的上确界sup(S)定义为S的所有上界组成的集合的最小元(若有)。即sup(S)满足:上确界也被称为最小上界、lub 或 LUB,在格论中也被称为并,在序理论中S的上确界也被记为 ∨ {displaystyle vee } S。在数学分析中,实数的集合S的上确界或最小上界记为 sup(S),并被定义为大于或等于 S 中所有成员的最小实数。实数的一个重要性质是它的完备性:实数集合的所有非空子集是有上界的就是这个实数集合成员的上确界。这个有理数的集合的上确界是个无理数,这意味着有理数是不完备的。此外,如果我们定义在 S 是空集的时候 sup(S) = −∞ 和在 S 没有上界的时候 sup(S) = +∞ ,则实数的所有集合都在扩展的实数轴上有上确界。如果上确界属于这个集合,则它是这个集合的最大元素。术语极大元在处理实数或任何其他全序集合的时候是同义的。要证明 a = sup(S),必须证明 a 是 S 的上界并且 S 的任何其他上界大于 a;等价地,也可以证明 a 是 S 的上界并且小于 a 的任何数都不是 S 的上界。

相关

  • 扁平苔藓扁平苔藓(Lichen planus)是一种表皮慢性病,属于丘疹鳞屑性疾患的一种,常见于皮肤、口腔、舌头。症状包含但不限于:丘疹,溃烂,瘙痒,红疹,白色斑片。可以在显微镜下观察切片而确诊。本
  • 热力学温标热力学温标,又称开尔文温标、绝对温标,简称开氏温标,凯氏温标,是一种标定、量化温度的方法。它对应的物理量是热力学温度,或称开氏度,符号为K,为国际单位制中的基本物理量之一;对应
  • 植原体"Ca. Phytoplasma allocasuarinae" "Ca. Phytoplasma americanum" "Ca. Phytoplasma asteris" "Ca. Phytoplasma aurantifolia" "Ca. Phytoplasma australiense" "Ca.
  • 现br /象现象(古希腊语:φαινόμενoν;英语:phenomenon,复数型:phenomena)是指能被观察、观测到的事实。通常是用在较特别的事物上。“现象”一词源为“可见的东西”,英文的“phenomen
  • 张春霆张春霆(1936年9月19日-),山东烟台人,中国生物信息学家,天津大学教授。。1961年毕业于复旦大学物理系,1965年在该校研究生毕业。1995年当选为中国科学院院士。
  • 保罗·冯·兴登堡保罗·冯·兴登堡,全名是保罗·路德维希·汉斯·安东·冯·贝内肯多夫和冯·兴登堡(德语:Paul Ludwig Hans Anton von Beneckendorff und von Hindenburg;1847年10月2日-1934年8
  • 法国联合航空772号班机法国联合航空772号班机(UTA772,UT772)是一班由布拉柴维尔经恩贾梅纳飞往巴黎的定期航班。1989年9月19日13时03分,一架编号为N54629的麦道DC-10-30执行该班机,从恩贾梅纳机场起飞,4
  • 海军武官驻外武官,即外交代表机构(大使馆、领事馆)的武职专员(法语:Attaché)。多由陆海空三军种的校官或将官中选派,处理军事性业务,为使馆中专司国防的馆员,也是一国军队的驻外代表。驻外武
  • 协同合作合作或协作(英语:Collaboration)是指一种由两个或两个以上的个人或团体作为一个共同的目标而交集或在一起共同工作,举例说明:一个知识分子可以通过合作的关系而去分享知识,再而经
  • 王引之《清代学者象传》第一集之王引之像王引之(1766年-1834年),字伯申,号曼卿。江苏高邮人。清朝政治人物、探花,训诂学家。祖父王安国为吏部尚书,父王念孙为直隶永定河兵备道。王引之幼