庞加莱圆盘模型

✍ dations ◷ 2025-11-22 07:57:38 #共形几何,双曲几何

几何中,庞加莱圆盘模型(Poincaré disk model),也叫共形圆盘模型(conformal disk model),是一个 -维双曲几何模型。几何中的点对应到 维圆盘(或球)上的点,几何中的“直线”(准确地说是测地线)对应到任意垂直于圆盘边界的圆弧或是圆盘的直径。庞加莱圆盘模型、克莱因模型以及庞加莱半空间模型,一起被贝尔特拉米用来证明双曲几何与欧几里得几何的相容性等价。

如果 和 是赋以通常欧几里得范数的 维向量空间 R 中两个向量,两者范数都小于 1,则我们可以定义一个等距不变量为:

这里 ||*|| 表示通常的欧几里得范数。那么距离函数是

这样的距离函数对任何两个范数小于 1 的向量有定义,将这样的向量集合变为一个度量空间,这是一个具有常曲率 -1 的双曲空间模型。这个模型具有共形性质,双曲空间中两条曲线相交的角度与在这个模型中的欧几里得角度相同。

庞加莱圆盘模型的度量形式是:

庞加莱圆盘模型,和克莱因模型一样,都与双曲面模型射影相关。如果我们有双曲面模型中双曲面的上叶中一点 ,这样就定义了双曲面模型中一点,我们可以通过与 连接一条直线将其投影到超曲面  = 0 上,所得是庞加莱圆盘模型中的对应点。

解析几何中一个基本构造是寻找过两个定点的一条直线。在庞加莱圆盘模型中,平面上的直线定义为具有如下性质的圆周之一部分

这是垂直于单位圆周的圆周的一般形式,或就是直径,可以证明这是连接这两点(双曲)距离最短的曲线,即测地线。给定圆盘中不在同一直径上两点 和 ,我们可以求出过这两点的圆周,得到

如果点 和 在圆盘的边界上但不是直径的端点,上面的公式简化成

我们可用一个公式计算出端点(理想点)为单位向量 与 以及端点为 与 的两条圆弧相交的角度。因为理想点在克莱因模型和庞加莱圆盘模型是一样的,两个模型中的公式是一样的。

如果两条直线都是直径,那么 = − 和 = −,则我们只要找出这两个单位向量的角度,角度 θ 的公式为

如果 = - 但 ≠ -,用楔积表示,公式变为

这里

如果两条弦都不是直径,得到一般的公式

这里

利用比内-柯西恒等式(Binet–Cauchy identity)以及这些向量都是单位向量的事实,我们可只使用点积将上面的表达式写成

毛瑞特斯·柯奈利斯·艾雪的画作圆极限IV、圆极限III是庞加莱圆盘的一个艺术形象化。

相关

  • 鹅膏菌属Aspidella鹅膏菌属(学名:Amanita)包含大约600个伞菌物种,包含一些世界有名的最毒菇类,但也包括一些可食用菇类。本属的菇类造成了95%的毒菇致死案例,其中光是毒鹅膏就占有50%。在
  • 菌物总界菌物总界(Holomycota,.mw-parser-output .smallcaps{font-variant:small-caps}.mw-parser-output .nocaps{text-transform:lowercase}Liu et al. 2009)是单鞭毛生物的一个演化
  • 人类的头骨颅骨或者头骨、骷髅头是指人类或者许多脊椎动物的头部骨性结构。头骨之功能为支撑脸部,并保护脑部。头骨分为两部分:颅骨和下颌骨。一般所称之‘头颅’通常仅指颅骨,并未包含下
  • 新能源汽车新能源汽车,是指采用非常规的车用燃料作为动力来源(或使用常规的车用燃料、采用新型车载动力装置),综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新
  • WB-57马丁B-57堪培拉轰炸机是美国制的双喷射发动机战术轰炸机及高空侦查机,于1953年进入美国空军服役。B-57为英国电气公司(英语:English Electric Canberra)制堪培拉式轰炸机授权在
  • 歌人歌人是日本传统诗歌形式和歌的创作者。现多以结社的方式在杂志等刊物上发表作品,形式涉及到短歌、歌论、歌集书评,内容有演讲、批评、教育、启蒙、选歌活动等等。
  • 十二年国民教育十二年国民基本教育,简称“十二年国教”,是中华民国教育部希望延长基本教育年限,将高中、高职、五专的前三年纳入并统整,以提升国民素质与国家实力,并以“全人教育”、“核心素养
  • 加利福尼亚州历史加利福尼亚州历史是指人类在美国西部加利福尼亚州活动的纪录,加州在13,000年至15,000年前就已经有美洲原住民居住在此。最早期的欧洲探险家在16世纪早期就已经沿着加州沿海航
  • RANKL3URF· tumor necrosis factor receptor binding · extracellular space · cytoplasm · monocyte chemotaxis · immune response · activation of JUN kinase act
  • 钷的同位素钷(原子量:)的同位素,没有一种是稳定的。备注:画上#号的数据代表没有经过实验的证明,只是理论推测而已,而用括号括起来的代表数据不确定性。