三角不等式

✍ dations ◷ 2025-12-04 21:47:27 #度量几何,几何不等式,三角形几何

三角不等式是数学上的一个不等式,表示从A到B再到C的距离永不少于从A到C的距离;亦可以说是两项独立物件的量之和不少于其和的量。它除了适用于三角形之外,还适用于其他数学范畴及日常生活中。

在三角形ABC中,这个式子用标量可以写作 A B ¯ + B C ¯ A C ¯ {\displaystyle {\overline {AB}}+{\overline {BC}}\geq {\overline {AC}}}

当该式取不等号时,可以由欧几里得第五公设导出;欧几里得给出的证明记载于《几何原本》第一卷命题20:(证明所用的辅助图像见右)

现在,我们有三角形ABC。延长 A B ¯ {\displaystyle {\overline {AB}}} 至点D,并使 B D ¯ = B C ¯ {\displaystyle {\overline {BD}}={\overline {BC}}} ,联结 D C ¯ {\displaystyle {\overline {DC}}}

那么,三角形BCD为等腰三角形,所以 B D C = B C D {\displaystyle \angle BDC=\angle BCD} 。记它们均为 α {\displaystyle \alpha }

根据欧几里得第五公设,角 β {\displaystyle \beta } 也就是 A C D {\displaystyle \angle ACD} 大于角 α {\displaystyle \alpha } B C D {\displaystyle \angle BCD} ,也就是 B D C {\displaystyle \angle BDC} );

由于角 β {\displaystyle \beta } 对应边 A D ¯ {\displaystyle {\overline {AD}}} ,角 α {\displaystyle \alpha } 对应边 A C ¯ {\displaystyle {\overline {AC}}} ,因此 A D ¯ > A C ¯ {\displaystyle {\overline {AD}}>{\overline {AC}}} (大角对大边,命题19)。

又由于 D B ¯ = B C ¯ {\displaystyle {\overline {DB}}={\overline {BC}}} ,所以 A D ¯ = A B ¯ + B D ¯ = A B ¯ + B C ¯ > A C ¯ {\displaystyle {\overline {AD}}={\overline {AB}}+{\overline {BD}}={\overline {AB}}+{\overline {BC}}>{\overline {AC}}} ,即证。

如果我们将该式左右各减去 B C ¯ {\displaystyle {\overline {BC}}} ,便能得到 A B ¯ > A C ¯ B C ¯ {\displaystyle {\overline {AB}}>{\overline {AC}}-{\overline {BC}}} ,这便是三角不等式的另一种表达方法:三角形的两边之差小于第三边。

当该式取等号的时候,其已经不属于欧氏几何的范畴,这种情况只有可能在球面三角形中出现,此时 | a b | c a + b {\displaystyle \left|a-b\right|\leq c\leq a+b} ,而a, b, c为三角形三边的长。

用向量的写法,这个不等式可以写成:

上式和标量的写法明显是等价的。

考虑到 A B + B C = A C {\displaystyle {\overrightarrow {AB}}+{\overrightarrow {BC}}={\overrightarrow {AC}}} ,该式也可以写成: | A B + B C | | A B | + | B C | {\displaystyle \left|{\overrightarrow {AB}}+{\overrightarrow {BC}}\right|\leq \left|{\overrightarrow {AB}}\right|+\left|{\overrightarrow {BC}}\right|} ,这种情况的形式和下方实数中的形式是一致的。

如果根据向量构建平面直角坐标系,则可以用代数的方式予以证明。

还是以右图中的三角形为例子。假设在坐标系中,向量 A B {\displaystyle {\overrightarrow {AB}}} 的方向向量为 ( x 1 , y 1 ) {\displaystyle (x_{1},y_{1})} ,向量 B C {\displaystyle {\overrightarrow {BC}}} 的方向向量为 ( x 2 , y 2 ) {\displaystyle (x_{2},y_{2})}

那么因为 A B + B C = A C {\displaystyle {\overrightarrow {AB}}+{\overrightarrow {BC}}={\overrightarrow {AC}}} ,得向量 A C {\displaystyle {\overrightarrow {AC}}} 的方向向量为 ( x 1 + x 2 , y 1 + y 2 ) {\displaystyle (x_{1}+x_{2},y_{1}+y_{2})}

因此, | A B | + | B C | = x 1 2 + y 1 2 + x 2 2 + y 2 2 {\displaystyle \left|{\overrightarrow {AB}}\right|+\left|{\overrightarrow {BC}}\right|={\sqrt {x_{1}^{2}+y_{1}^{2}}}+{\sqrt {x_{2}^{2}+y_{2}^{2}}}} | A C | = ( x 1 + x 2 ) 2 + ( y 1 + y 2 ) 2 {\displaystyle \left|{\overrightarrow {AC}}\right|={\sqrt {(x_{1}+x_{2})^{2}+(y_{1}+y_{2})^{2}}}}

所以, | A B | + | B C | | A C | = 2 x 1 2 x 2 2 + x 1 2 y 2 2 + x 2 2 y 1 2 + y 1 2 y 2 2 2 x 1 x 2 2 y 1 y 2 {\displaystyle \left|{\overrightarrow {AB}}\right|+\left|{\overrightarrow {BC}}\right|-\left|{\overrightarrow {AC}}\right|=2{\sqrt {x_{1}^{2}x_{2}^{2}+x_{1}^{2}y_{2}^{2}+x_{2}^{2}y_{1}^{2}+y_{1}^{2}y_{2}^{2}}}-2x_{1}x_{2}-2y_{1}y_{2}}

( 2 x 1 2 x 2 2 + x 1 2 y 2 2 + x 2 2 y 1 2 + y 1 2 y 2 2 ) 2 = 4 x 1 2 x 2 2 + 4 x 1 2 y 2 2 + 4 x 2 2 y 1 2 + 4 y 1 2 y 2 2 {\displaystyle (2{\sqrt {x_{1}^{2}x_{2}^{2}+x_{1}^{2}y_{2}^{2}+x_{2}^{2}y_{1}^{2}+y_{1}^{2}y_{2}^{2}}})^{2}=4x_{1}^{2}x_{2}^{2}+4x_{1}^{2}y_{2}^{2}+4x_{2}^{2}y_{1}^{2}+4y_{1}^{2}y_{2}^{2}} ( 2 x 1 x 2 + 2 y 1 y 2 ) 2 = 4 x 1 2 x 2 2 + 8 x 1 x 2 y 1 y 2 + 4 y 1 2 y 2 2 {\displaystyle (2x_{1}x_{2}+2y_{1}y_{2})^{2}=4x_{1}^{2}x_{2}^{2}+8x_{1}x_{2}y_{1}y_{2}+4y_{1}^{2}y_{2}^{2}}

两者相减再配方,得到 ( 2 x 1 y 2 2 x 2 y 1 ) 2 {\displaystyle (2x_{1}y_{2}-2x_{2}y_{1})^{2}} ,该式实际上是 ( | A B | + | B C | ) 2 ( | A C | ) 2 {\displaystyle (\left|{\overrightarrow {AB}}\right|+\left|{\overrightarrow {BC}}\right|)^{2}-(\left|{\overrightarrow {AC}}\right|)^{2}} 的值。

当且仅当 x 1 y 2 = x 2 y 1 {\displaystyle x_{1}y_{2}=x_{2}y_{1}} 时,该式的值为0,而此时我们可以推出 x 1 = k x 2 , y 1 = k y 2 , k {\displaystyle x_{1}=kx_{2},y_{1}=ky_{2},k\in \Re } ,这说明 x 1 {\displaystyle x_{1}} x 2 {\displaystyle x_{2}} y 1 {\displaystyle y_{1}} y 2 {\displaystyle y_{2}} 都是平行的。而由于 x 1 {\displaystyle x_{1}} ,也就是向量 A B {\displaystyle {\overrightarrow {AB}}} 的终点和 x 2 {\displaystyle x_{2}} ,也就是向量 B C {\displaystyle {\overrightarrow {BC}}} 的起点是相同的,显然 A B {\displaystyle {\overrightarrow {AB}}} B C {\displaystyle {\overrightarrow {BC}}} 共线。这种情况在欧氏几何中是不可能的,只有在非欧几何的情况下才能成立。用 y 1 {\displaystyle y_{1}} y 2 {\displaystyle y_{2}} 平行也一样能够推出 A B

相关

  • β-硝基丙酸β-硝基丙酸(3-硝基丙酸,BPA,3-NPA,C3H5NO4)是一种真菌毒素,其对线粒体有抑制作用对人体有毒。许多真菌产生这种毒素,因此广泛存在于食品如甘蔗,以及通过真菌发酵的日本主食味噌,酱油
  • 沃森综合征沃森综合征(Watson syndrome)是一种常染色体显性遗传病。以虹膜色素缺陷瘤、腋窝/腹股沟斑点和神经纤维瘤形成为特点。沃森综合征可能和引起Ⅰ型神经纤维瘤病的神经纤维瘤蛋白
  • 乙基硫酸硫酸乙酯(英语:Ethyl sulfate,又叫硫酸一乙酯、乙基硫酸 英语:sulfovinic acid 等)是一种有机化合物,乙醇和硫酸生成的两种酯之一,是乙醇生成乙烯的中间产物。
  • 上虞区上虞区,浙江省绍兴市市辖区,位于浙江省东部、绍兴市东北部,钱塘江南岸。东邻宁波市余姚市,南接嵊州市,西连越城区、柯桥区,北与嘉兴市海宁市、海盐县隔江相望。陆域面积1401.68平
  • 瓦西列夫斯基亚历山大·米哈伊洛维奇·华西列夫斯基(俄文:Александр Михайлович Василевский,1895年9月30日-1977年12月5日),苏联红军总参谋长、远东军总司令。
  • 1981年南斯拉夫人口普查1981年南斯拉夫人口普查是南斯拉夫自1921年来的第7次人口普查,也是第二次世界大战以后的第5次人口普查。普查标准日在1981年3月31日。南斯拉夫的下一次人口普查在1991年3月底
  • 新秩序 (印尼)新秩序(印尼语:Orde Baru)是印度尼西亚第二任总统苏哈托于1966年掌权后,为与前任总统苏卡诺的“旧秩序”(Orde Lama)有所区别而使用的政治语言。一般而言,新秩序所形容的即是苏哈托
  • 陈克功陈克功(1910年-1992年),男,陕西安定人,中华人民共和国军事人物,中国人民解放军少将,曾任兰州军区生产建设兵团后勤部部长,兵团副司令员。
  • 科林·特恩布尔科林·麦克米兰·特恩布尔(英语:Colin Macmillan Turnbull;1924年11月23日-1994年7月28日)是一位英籍美国人类学家,以著作《森林人》和《山岳人》而闻名,也是第一批在民族音乐学领
  • 杨维翰 (明朝)杨维翰,字子固,号方塘,诸暨人,明朝书画家。杨维桢之兄,幼从父杨宏学经史诗文,不下楼五年。早年担任郡文学,再改为慈溪校官,晚年担任饶州(今江西上饶)双溪书院山长,卒于任上。善画墨竹,柯