三角不等式

✍ dations ◷ 2025-11-05 07:24:34 #度量几何,几何不等式,三角形几何

三角不等式是数学上的一个不等式,表示从A到B再到C的距离永不少于从A到C的距离;亦可以说是两项独立物件的量之和不少于其和的量。它除了适用于三角形之外,还适用于其他数学范畴及日常生活中。

在三角形ABC中,这个式子用标量可以写作 A B ¯ + B C ¯ A C ¯ {\displaystyle {\overline {AB}}+{\overline {BC}}\geq {\overline {AC}}}

当该式取不等号时,可以由欧几里得第五公设导出;欧几里得给出的证明记载于《几何原本》第一卷命题20:(证明所用的辅助图像见右)

现在,我们有三角形ABC。延长 A B ¯ {\displaystyle {\overline {AB}}} 至点D,并使 B D ¯ = B C ¯ {\displaystyle {\overline {BD}}={\overline {BC}}} ,联结 D C ¯ {\displaystyle {\overline {DC}}}

那么,三角形BCD为等腰三角形,所以 B D C = B C D {\displaystyle \angle BDC=\angle BCD} 。记它们均为 α {\displaystyle \alpha }

根据欧几里得第五公设,角 β {\displaystyle \beta } 也就是 A C D {\displaystyle \angle ACD} 大于角 α {\displaystyle \alpha } B C D {\displaystyle \angle BCD} ,也就是 B D C {\displaystyle \angle BDC} );

由于角 β {\displaystyle \beta } 对应边 A D ¯ {\displaystyle {\overline {AD}}} ,角 α {\displaystyle \alpha } 对应边 A C ¯ {\displaystyle {\overline {AC}}} ,因此 A D ¯ > A C ¯ {\displaystyle {\overline {AD}}>{\overline {AC}}} (大角对大边,命题19)。

又由于 D B ¯ = B C ¯ {\displaystyle {\overline {DB}}={\overline {BC}}} ,所以 A D ¯ = A B ¯ + B D ¯ = A B ¯ + B C ¯ > A C ¯ {\displaystyle {\overline {AD}}={\overline {AB}}+{\overline {BD}}={\overline {AB}}+{\overline {BC}}>{\overline {AC}}} ,即证。

如果我们将该式左右各减去 B C ¯ {\displaystyle {\overline {BC}}} ,便能得到 A B ¯ > A C ¯ B C ¯ {\displaystyle {\overline {AB}}>{\overline {AC}}-{\overline {BC}}} ,这便是三角不等式的另一种表达方法:三角形的两边之差小于第三边。

当该式取等号的时候,其已经不属于欧氏几何的范畴,这种情况只有可能在球面三角形中出现,此时 | a b | c a + b {\displaystyle \left|a-b\right|\leq c\leq a+b} ,而a, b, c为三角形三边的长。

用向量的写法,这个不等式可以写成:

上式和标量的写法明显是等价的。

考虑到 A B + B C = A C {\displaystyle {\overrightarrow {AB}}+{\overrightarrow {BC}}={\overrightarrow {AC}}} ,该式也可以写成: | A B + B C | | A B | + | B C | {\displaystyle \left|{\overrightarrow {AB}}+{\overrightarrow {BC}}\right|\leq \left|{\overrightarrow {AB}}\right|+\left|{\overrightarrow {BC}}\right|} ,这种情况的形式和下方实数中的形式是一致的。

如果根据向量构建平面直角坐标系,则可以用代数的方式予以证明。

还是以右图中的三角形为例子。假设在坐标系中,向量 A B {\displaystyle {\overrightarrow {AB}}} 的方向向量为 ( x 1 , y 1 ) {\displaystyle (x_{1},y_{1})} ,向量 B C {\displaystyle {\overrightarrow {BC}}} 的方向向量为 ( x 2 , y 2 ) {\displaystyle (x_{2},y_{2})}

那么因为 A B + B C = A C {\displaystyle {\overrightarrow {AB}}+{\overrightarrow {BC}}={\overrightarrow {AC}}} ,得向量 A C {\displaystyle {\overrightarrow {AC}}} 的方向向量为 ( x 1 + x 2 , y 1 + y 2 ) {\displaystyle (x_{1}+x_{2},y_{1}+y_{2})}

因此, | A B | + | B C | = x 1 2 + y 1 2 + x 2 2 + y 2 2 {\displaystyle \left|{\overrightarrow {AB}}\right|+\left|{\overrightarrow {BC}}\right|={\sqrt {x_{1}^{2}+y_{1}^{2}}}+{\sqrt {x_{2}^{2}+y_{2}^{2}}}} | A C | = ( x 1 + x 2 ) 2 + ( y 1 + y 2 ) 2 {\displaystyle \left|{\overrightarrow {AC}}\right|={\sqrt {(x_{1}+x_{2})^{2}+(y_{1}+y_{2})^{2}}}}

所以, | A B | + | B C | | A C | = 2 x 1 2 x 2 2 + x 1 2 y 2 2 + x 2 2 y 1 2 + y 1 2 y 2 2 2 x 1 x 2 2 y 1 y 2 {\displaystyle \left|{\overrightarrow {AB}}\right|+\left|{\overrightarrow {BC}}\right|-\left|{\overrightarrow {AC}}\right|=2{\sqrt {x_{1}^{2}x_{2}^{2}+x_{1}^{2}y_{2}^{2}+x_{2}^{2}y_{1}^{2}+y_{1}^{2}y_{2}^{2}}}-2x_{1}x_{2}-2y_{1}y_{2}}

( 2 x 1 2 x 2 2 + x 1 2 y 2 2 + x 2 2 y 1 2 + y 1 2 y 2 2 ) 2 = 4 x 1 2 x 2 2 + 4 x 1 2 y 2 2 + 4 x 2 2 y 1 2 + 4 y 1 2 y 2 2 {\displaystyle (2{\sqrt {x_{1}^{2}x_{2}^{2}+x_{1}^{2}y_{2}^{2}+x_{2}^{2}y_{1}^{2}+y_{1}^{2}y_{2}^{2}}})^{2}=4x_{1}^{2}x_{2}^{2}+4x_{1}^{2}y_{2}^{2}+4x_{2}^{2}y_{1}^{2}+4y_{1}^{2}y_{2}^{2}} ( 2 x 1 x 2 + 2 y 1 y 2 ) 2 = 4 x 1 2 x 2 2 + 8 x 1 x 2 y 1 y 2 + 4 y 1 2 y 2 2 {\displaystyle (2x_{1}x_{2}+2y_{1}y_{2})^{2}=4x_{1}^{2}x_{2}^{2}+8x_{1}x_{2}y_{1}y_{2}+4y_{1}^{2}y_{2}^{2}}

两者相减再配方,得到 ( 2 x 1 y 2 2 x 2 y 1 ) 2 {\displaystyle (2x_{1}y_{2}-2x_{2}y_{1})^{2}} ,该式实际上是 ( | A B | + | B C | ) 2 ( | A C | ) 2 {\displaystyle (\left|{\overrightarrow {AB}}\right|+\left|{\overrightarrow {BC}}\right|)^{2}-(\left|{\overrightarrow {AC}}\right|)^{2}} 的值。

当且仅当 x 1 y 2 = x 2 y 1 {\displaystyle x_{1}y_{2}=x_{2}y_{1}} 时,该式的值为0,而此时我们可以推出 x 1 = k x 2 , y 1 = k y 2 , k {\displaystyle x_{1}=kx_{2},y_{1}=ky_{2},k\in \Re } ,这说明 x 1 {\displaystyle x_{1}} x 2 {\displaystyle x_{2}} y 1 {\displaystyle y_{1}} y 2 {\displaystyle y_{2}} 都是平行的。而由于 x 1 {\displaystyle x_{1}} ,也就是向量 A B {\displaystyle {\overrightarrow {AB}}} 的终点和 x 2 {\displaystyle x_{2}} ,也就是向量 B C {\displaystyle {\overrightarrow {BC}}} 的起点是相同的,显然 A B {\displaystyle {\overrightarrow {AB}}} B C {\displaystyle {\overrightarrow {BC}}} 共线。这种情况在欧氏几何中是不可能的,只有在非欧几何的情况下才能成立。用 y 1 {\displaystyle y_{1}} y 2 {\displaystyle y_{2}} 平行也一样能够推出 A B

相关

  • 访问互联网权访问互联网权或上网权(right to Internet access),也称为宽带权(right to broadband)、连接自由(freedom to connect),认为所有人必须能够访问互联网,以行使和享受其言论自由、见解自
  • 沙丁鱼肉沙丁鱼罐头是一种以沙丁鱼为主要食材的罐头,沙丁鱼通常浸在盐水、豆油、菜油、橄榄油或番茄酱,有部分会加入辣椒成为辣沙丁鱼罐头。因为要节省制造罐头的材料和运输成本,同时减
  • XX宪法正文I ∙ II ∙ III ∙ IV ∙ V ∙ VI ∙ VII其它修正案 XI ∙ XII ∙ XIII ∙ XIV ∙ XV XVI ∙ XVII ∙ XVIII ∙ XIX ∙ XX XXI ∙ XXII ∙ XXIII ∙
  • 克卢萨哈奇河克卢萨哈奇河(Caloosahatchee River)是位于佛罗里达州美国墨西哥湾沿岸地区的一条河流,长约67英里(108千米)。它灌溉着麦尔兹堡和佛罗里达大沼泽这几片地区,并且为奥基乔比水道和
  • 埃里克·伊茨拉勒维奇埃里克·伊茨拉勒维奇(Erik Izraelewicz,1954年2月6日-2012年11月27日)是一个法国记者兼作家,对经济和金融有着深厚研究素养。2011年,他负责《世界报》的编辑,同时还负责金融报纸《
  • 弗朗索瓦·古恩弗朗索瓦·古恩(英语:Francois Gouin,法语:François Gouin,1831年-1896年)出生于诺曼底,是一位法国教育家和专门从事外语教学的教学者。人们学习一门外语,应该如同他们孩提时学习母
  • 齿龈铅线铅线(英文:lead line 或 Burton's line),为一种铅中毒。1840年由英国的亨利·巴顿医师所纪录,主要为铅所引起的临床标志。患者可以看到牙龈会出现紫蓝色的铅线(很少见于幼儿)。铅在
  • 盘古中央山脉盘古中央山脉(Central Pangean Mountains)是三叠纪盘古大陆上一个东北-西南走向的古山脉。该山脉是因为两个面积较小的超大陆欧美大陆和冈瓦那大陆相碰撞形成盘古大陆的过程中
  • 博客作者博主(英语:Blogger)一般是指经营博客(英语:Blog)的人。在台湾只要于痞客邦 PIXNET、随意窝 Xuite、Blogger(service)...等免费BSP博客平台注册账户,或使用WordPress系统自架网站,就
  • 艾瑞克·麦柯马克艾瑞克·麦柯马克(英语:Eric James McCormack,1963年4月18日-)是一位加拿大演员、音乐人、作家和制作人。出生在多伦多。他的演艺生涯是在高中时期就开始了。他最著名的作品是在