超大规模集成电路(英语:very-large-scale integration,缩写:VLSI),是一种将大量晶体管组合到单一芯片的集成电路,其集成度大于大规模集成电路。集成的晶体管数在不同的标准中有所不同。从1970年代开始,随着复杂的半导体以及通信技术的发展,集成电路的研究、发展也逐步展开。计算机里的控制核心微处理器就是超大规模集成电路的最典型实例,超大规模集成电路设计(VLSI design),尤其是数字集成电路,通常采用电子设计自动化的方式进行,已经成为计算机工程的重要分支之一。
在1920年代,一些发明家试图掌握控制固态二极管中电流的方法,他们的构想在后来的双极性晶体管中得以实现。然而,他们的设想直到第二次世界大战结束之后才得以实现。在战争时期,人们把精力集中在制造雷达这样的军工产品,因此电子工业的发展并不如之后那样迅猛,不过人们对于半导体物理学的了解逐渐增加,制造工艺水平也逐渐提升。战后,许多科学家重新开始从事固态电子器件的研究。1947年,著名的贝尔实验室成功地研制了晶体管。自此,电子学的研究方向从真空管转向到了固态电子器件。
晶体管在当时看来具有小型、高效的特点。1950年代,一些电子工程师希望以晶体管为基础,研制比以前更高级、复杂的电路充满了期待。然而,随着电路复杂程度的提升,技术问题对器件性能的影响逐渐引起了人们的注意。
像计算机主板这样复杂的电路,往往对于响应速度有较高的要求。如果计算机的组件过于庞大,或者不同组件之间的导线太长,电信号就不能够在电路中以足够快的速度传播,这样会造成计算机工作缓慢,效率低下,甚至引起逻辑错误。
1958年,德州仪器的杰克·基尔比找到了上述问题的解决方案。他提出,可以把电路中的所有组件和芯片用同一半导体材料块制成。当时他的同事们正在度假,他们结束度假后,基尔比立即展示了他的新设计。随后,他研制了一个这种新型电路的测试版本。1958年9月,第一个集成电路研制成功。尽管这个集成电路在现在看来还非常粗糙,而且存在一些问题,但集成电路在电子学史上确实是个创新的概念。通过在同一材料块上集成所有组件,并通过上方的金属化层连接各个部分,就不再需要分立的独立组件了,这样,就避免了手工组装组件、导线的步骤。此外,电路的特征尺寸大大降低。随着电子设计自动化的逐步发展,制造工艺中的许多流程可以实现自动化控制。自此,把所有组件集成到单一硅片上的想法得以实现,小规模集成电路(Small Scale Integration, SSI)时代始于1960年代早期,后来历经中规模集成电路(Medium Scale Integration, MSI,1960年晚期)、大规模集成电路和超大规模集成电路(1980年早期)。超大规模集成电路的晶体管数量可以达到10,000个(现在已经高达1,000,000个)。
截至2016年晚期,数十亿级别的晶体管处理器已经普遍。随着半导体制造工艺从10纳米水平跃升到下一步7纳米,会遇到诸如量子穿隧效应之类的挑战。值得注意的例子是英伟达的GeForce 10系列,代号‘NVIDIA TITAN X’的图形处理器的显示核心,采用了全部120亿个晶体管来处理数字逻辑。而Itanium的大多数晶体管是用来构成其3千两百万字节的三级缓存。Intel Core i7处理器的芯片集成度达到了14亿个晶体管。当前所采用的设计与早期不同的是它广泛应用电子设计自动化工具,设计人员可以把大部分精力放在电路逻辑功能的硬件描述语言表达形式,而功能验证、逻辑仿真、逻辑综合、布局、布线、版图等可以由计算机辅助完成。
由于技术规模不断扩大,微处理器的复杂程度也不断提高,微处理器的设计者已经遇到了若干挑战。