超椭圆

✍ dations ◷ 2024-12-22 18:52:38 #超椭圆
超椭圆(superellipse)也称为拉梅曲线(Lamé curve),是在笛卡儿坐标系下满足以下方程式的点的集合:其中n、a及b为正数。上述方程式的解会是一个在−a ≤ x ≤ +a及−b ≤ y ≤ +b长方形内的封闭曲线,参数a及b称为曲线的半直径(semi-diameters)。n在0和1之间时,超椭圆的图形类似一个曲线的四角星,四边的曲线往内凹。n为1时,超椭圆的图形为一菱形,四个顶点为(±a, 0)及(0, ±b)。n在1和2之间时,超椭圆的图形类似菱形,四个顶点位置相同,但四边是往外凸的曲线,越接近顶点,曲线的曲率越大,顶点的曲率趋近无限大。n为2时,超椭圆的图形即为椭圆(若a = b时则为一个圆形)。当n大于2时,超椭圆的图形看似四角有圆角(英语:Chamfer)的长方形,曲线的曲率在(±a, 0)及(0, ±b)四点为0。n为4的超椭圆也称为方圆形。n < 2的超椭圆也称为次椭圆(hypoellipse),n > 2的超椭圆则称为过椭圆(hyperellipse)。当n ≥ 1,且a = b=1时的超椭圆是二维Lp空间下的单位圆,n即为其p-范数。超椭圆的极点为(±a, 0)及(0, ±b),而其四个“角”为(±sa, ±sb),其中 s = 2 − 1 n {displaystyle s=2^{-{frac {1}{n}}}} 。当n为一个非零的有理数p/q(最简分数形式),则超椭圆为一平面代数曲线。若n为正数,其曲线次数为pq,若n为负数,其曲线次数为2pq。若a和b均为1且n为偶数,则此超椭圆为一n次的费马曲线(英语:Fermat curve),此时超椭圆没有奇点,但一般而言超椭圆中会有有奇点。超椭圆的参数方程如下:或超椭圆内的面积可以用Γ函数Γ(x)来表示:其垂足曲线较容易计算,而以下曲线的垂足曲线可以用极坐标方式来表示:超椭圆可以延伸为以下的形式:或其中的 θ {displaystyle theta } 不是表示角度,只是方程式的一个参数。超椭圆在笛卡儿坐标系下的表示式是由1795年出生的法国数学家加布里埃尔·拉梅,由椭圆的方程式扩展而得。字体设计师赫尔曼·察普夫在1952年设计的Melior(英语:Melior)字体,利用超椭圆作为字母o的外形。三十年后高德纳设法选择了介于椭圆及超椭圆之间的曲线(两者都用样条函数近似),作为他的Computer Modern字体。1959年时瑞典斯德哥尔摩提出了其市中心赛格尔广场圆环的设计竞赛。丹麦诗人皮亚特·海恩(1905–1996)的设计以是一个n = 2.5,a/b = 6/5的超椭圆为基础。他的说明如下:赛格尔广场在1967年完成,而皮亚特·海恩继续在其他的艺术品中使用超椭圆,包括床、碟子、桌子等。皮亚特·海恩将超椭圆以长轴为轴心旋转,形成了一个立体的超级蛋(英语:superegg),其特点是可以平面上直立,不会倒下,因此变成一个特别的玩具。1968年在巴黎在为越战谈判时,谈判者不满意谈判桌的外形,Balinski、Kieron Underwood及Holt在一封寄给纽约时报的信件中建议以超椭圆作为谈判桌的外形。1968年由墨西哥城主办奥运时,也以超椭圆为阿兹特克体育场的外形。托布勒(英语:Waldo R. Tobler)在1973年提出了托布勒超椭圆投影(英语:Tobler hyperelliptical projection),其中的经线就是用超椭圆来表示。美式足球球队匹兹堡钢人的标志是三个相连的超椭圆。

相关

  • Nasup+/sup3s12,8,1蒸气压第一:495.8 kJ·mol−1 第二:4562 kJ·mol−1 第三:6910.3 kJ·mol−1 (主条目:钠的同位素钠是一种化学元素,元素符号为Na,原子序为11,相对原子量为23。它是柔软且
  • 滴虫病滴虫性阴道炎(英语:trichomoniasis,trich)也称为滴虫炎,,是因为阴道毛滴虫(英语:Trichomonas vaginalis)所引起的传染病,会造成女性阴道或是男性尿道的发炎。约70%的女性及男性在罹病
  • 药物依赖物质依赖(英语:Substance dependence)或称药物成瘾(drug addiction),指需要服用药物才能使日常生活表现正常的强迫行为。出现物质依赖状况后,若突然停止服用药物,可能出现药物戒断症
  • 归纳推理归纳法或归纳推理(Inductive reasoning),有时叫做归纳逻辑,是论证的前提支持结论但不确保结论的推理过程。它基于对特殊的代表(token)的有限观察,把性质或关系归结到类型;或基于对反
  • 奥地利第一共和国奥地利第一共和国(德语:Republik Österreich),指的是奥地利历史中,自1919年奥匈帝国崩溃后的短命政权德意志奥地利共和国结束起至1938年德奥合并之间的时期。当时的特征是左右两
  • 聚乳酸聚乳酸(英语:Polylactic Acid或Polylactide,缩写:PLA),是一种热塑性脂肪族聚酯。生产聚乳酸所需的乳酸或丙交酯(英文:Lactide)可以通过可再生资源发酵、脱水、纯化后得到,所得的聚乳酸
  • 沃尔夫冈·莱昂哈德沃尔夫冈·莱昂哈德(德语:Wolfgang Leonhard 1921年4月16日-2014年8月17日)德国政治作家、苏联、东德、共产主义史学家,生于德国共产党家庭,母亲与为德国共产党创始人罗莎·卢森堡
  • 东非战役埃塞俄比亚帝国比利时自由法国意大利帝国相关条目东非战役,也称为阿比西尼亚战役,是一场第二次世界大战期间,主要是大英帝国的盟军和轴心国之间的战役。1936年5月,意大利征服了
  • 斑岩斑岩,旧称玢岩,是具有斑状结构的火成岩,比较坚固,可用于做建筑材料。斑晶一般由碱性长石或石英组成,基质为细粒或隐晶(玻璃体)。斑岩一部分属于火成岩中的喷出岩,但一般属于火成岩中
  • EucoccidioridaEucoccidiida真球虫目(学名:Eucoccidiorida),是顶复门类锥体纲球虫亚纲之下的一个目,是一种单细胞的微小成胞的寄生物种。本目的原生物种可寄生在人体、家畜、家禽及野生动物的体