首页 >
超椭圆
✍ dations ◷ 2025-12-01 19:07:48 #超椭圆
超椭圆(superellipse)也称为拉梅曲线(Lamé curve),是在笛卡儿坐标系下满足以下方程式的点的集合:其中n、a及b为正数。上述方程式的解会是一个在−a ≤ x ≤ +a及−b ≤ y ≤ +b长方形内的封闭曲线,参数a及b称为曲线的半直径(semi-diameters)。n在0和1之间时,超椭圆的图形类似一个曲线的四角星,四边的曲线往内凹。n为1时,超椭圆的图形为一菱形,四个顶点为(±a, 0)及(0, ±b)。n在1和2之间时,超椭圆的图形类似菱形,四个顶点位置相同,但四边是往外凸的曲线,越接近顶点,曲线的曲率越大,顶点的曲率趋近无限大。n为2时,超椭圆的图形即为椭圆(若a = b时则为一个圆形)。当n大于2时,超椭圆的图形看似四角有圆角(英语:Chamfer)的长方形,曲线的曲率在(±a, 0)及(0, ±b)四点为0。n为4的超椭圆也称为方圆形。n < 2的超椭圆也称为次椭圆(hypoellipse),n > 2的超椭圆则称为过椭圆(hyperellipse)。当n ≥ 1,且a = b=1时的超椭圆是二维Lp空间下的单位圆,n即为其p-范数。超椭圆的极点为(±a, 0)及(0, ±b),而其四个“角”为(±sa, ±sb),其中
s
=
2
−
1
n
{displaystyle s=2^{-{frac {1}{n}}}}
。当n为一个非零的有理数p/q(最简分数形式),则超椭圆为一平面代数曲线。若n为正数,其曲线次数为pq,若n为负数,其曲线次数为2pq。若a和b均为1且n为偶数,则此超椭圆为一n次的费马曲线(英语:Fermat curve),此时超椭圆没有奇点,但一般而言超椭圆中会有有奇点。超椭圆的参数方程如下:或超椭圆内的面积可以用Γ函数Γ(x)来表示:其垂足曲线较容易计算,而以下曲线的垂足曲线可以用极坐标方式来表示:超椭圆可以延伸为以下的形式:或其中的
θ
{displaystyle theta }
不是表示角度,只是方程式的一个参数。超椭圆在笛卡儿坐标系下的表示式是由1795年出生的法国数学家加布里埃尔·拉梅,由椭圆的方程式扩展而得。字体设计师赫尔曼·察普夫在1952年设计的Melior(英语:Melior)字体,利用超椭圆作为字母o的外形。三十年后高德纳设法选择了介于椭圆及超椭圆之间的曲线(两者都用样条函数近似),作为他的Computer Modern字体。1959年时瑞典斯德哥尔摩提出了其市中心赛格尔广场圆环的设计竞赛。丹麦诗人皮亚特·海恩(1905–1996)的设计以是一个n = 2.5,a/b = 6/5的超椭圆为基础。他的说明如下:赛格尔广场在1967年完成,而皮亚特·海恩继续在其他的艺术品中使用超椭圆,包括床、碟子、桌子等。皮亚特·海恩将超椭圆以长轴为轴心旋转,形成了一个立体的超级蛋(英语:superegg),其特点是可以平面上直立,不会倒下,因此变成一个特别的玩具。1968年在巴黎在为越战谈判时,谈判者不满意谈判桌的外形,Balinski、Kieron Underwood及Holt在一封寄给纽约时报的信件中建议以超椭圆作为谈判桌的外形。1968年由墨西哥城主办奥运时,也以超椭圆为阿兹特克体育场的外形。托布勒(英语:Waldo R. Tobler)在1973年提出了托布勒超椭圆投影(英语:Tobler hyperelliptical projection),其中的经线就是用超椭圆来表示。美式足球球队匹兹堡钢人的标志是三个相连的超椭圆。
相关
- 立氏立克次体立氏立克次体(英语:Rickettsia rickettsii),一种单细胞、革兰氏阴性的立克次体,是落矶山斑点热的病原体,原生于美洲。医学导航:病菌细菌(分类)gr+f/gr+a(t)/gr-p(c/gr-o药物(J1p、w、n、m、
- 阿尔弗雷德·拉塞尔·华莱士阿尔弗雷德·拉塞尔·华莱士 OM FRS(英语:Alfred Russel Wallace,1823年1月8日-1913年11月7日),英国博物学者、探险家、地理学家、人类学家和生物学家,以“天择”独立构想演化论而
- 偏好偏好是实际潜藏在人们内心的一种情感和倾向,它是非直观的,引起偏好的感性因素多于理性因素。偏好有明显的个体差异,也呈现出群体特征。在微观经济学价值理论中,偏好是价值上相对
- 55S核糖体线粒体核糖体是存在于真核细胞线粒体内的一种核糖体,负责完成线粒体这种细胞器中进行的翻译过程。线粒体核糖体的沉降系数介干55S-56S之间,是已发现的沉降系数最小的核糖体。
- 同居同居(英语:Cohabitation)是指没有结婚的人居住在一起的形式。在不断变化的(特别是婚姻、性别角色和宗教方面的)社会观念引导下,这种形式在西方国家近几十年越来越普遍。它常常涉及
- 吉尔伽美什史诗其他传说《吉尔伽美什史诗》(又译为吉加墨史诗、鸠格米西史诗)是来自美索不达米亚的文学作品,是已发现的最早英雄史诗。史诗所述的历史时期据信在公元前2700年至公元前2500年之
- 电影类型电影类型(英语:Film Genre),也叫做“片种”,指的是基于电影的叙事元素和情感反应进行相似分类的电影类别。绝大部分电影类型的理论源自文学批评。电影的基本类别包括“虚构片”和
- 蒂克路德维希·蒂克(Ludwig Tieck)(1773年5月31日- 1853年4月28日)是德国诗人,翻译家,编辑,小说家,作家和评论家,是18世纪末和19世纪初的浪漫主义运动的元勋之一。路德维希·蒂克出生于柏
- 辽西郡辽西郡,秦代出土文物皆作潦西郡,中国古代的郡。战国燕所置,秦朝以后沿用。自古为边塞驻屯地,唐代金昌绪《春怨》云:“打起黄莺儿,莫教枝上啼。啼时惊妾梦,不得到辽西”。秦汉治所在
- T-34战车T-34坦克是一款苏联于二战前研发的中型坦克。T-34坦克出现时纳粹几乎没有能对付这种坦克的武器,它的76毫米火炮也能够轻松击穿同时期德军的所有坦克。它的出现对纳粹德国造成
