首页 >
超椭圆
✍ dations ◷ 2025-12-05 02:34:36 #超椭圆
超椭圆(superellipse)也称为拉梅曲线(Lamé curve),是在笛卡儿坐标系下满足以下方程式的点的集合:其中n、a及b为正数。上述方程式的解会是一个在−a ≤ x ≤ +a及−b ≤ y ≤ +b长方形内的封闭曲线,参数a及b称为曲线的半直径(semi-diameters)。n在0和1之间时,超椭圆的图形类似一个曲线的四角星,四边的曲线往内凹。n为1时,超椭圆的图形为一菱形,四个顶点为(±a, 0)及(0, ±b)。n在1和2之间时,超椭圆的图形类似菱形,四个顶点位置相同,但四边是往外凸的曲线,越接近顶点,曲线的曲率越大,顶点的曲率趋近无限大。n为2时,超椭圆的图形即为椭圆(若a = b时则为一个圆形)。当n大于2时,超椭圆的图形看似四角有圆角(英语:Chamfer)的长方形,曲线的曲率在(±a, 0)及(0, ±b)四点为0。n为4的超椭圆也称为方圆形。n < 2的超椭圆也称为次椭圆(hypoellipse),n > 2的超椭圆则称为过椭圆(hyperellipse)。当n ≥ 1,且a = b=1时的超椭圆是二维Lp空间下的单位圆,n即为其p-范数。超椭圆的极点为(±a, 0)及(0, ±b),而其四个“角”为(±sa, ±sb),其中
s
=
2
−
1
n
{displaystyle s=2^{-{frac {1}{n}}}}
。当n为一个非零的有理数p/q(最简分数形式),则超椭圆为一平面代数曲线。若n为正数,其曲线次数为pq,若n为负数,其曲线次数为2pq。若a和b均为1且n为偶数,则此超椭圆为一n次的费马曲线(英语:Fermat curve),此时超椭圆没有奇点,但一般而言超椭圆中会有有奇点。超椭圆的参数方程如下:或超椭圆内的面积可以用Γ函数Γ(x)来表示:其垂足曲线较容易计算,而以下曲线的垂足曲线可以用极坐标方式来表示:超椭圆可以延伸为以下的形式:或其中的
θ
{displaystyle theta }
不是表示角度,只是方程式的一个参数。超椭圆在笛卡儿坐标系下的表示式是由1795年出生的法国数学家加布里埃尔·拉梅,由椭圆的方程式扩展而得。字体设计师赫尔曼·察普夫在1952年设计的Melior(英语:Melior)字体,利用超椭圆作为字母o的外形。三十年后高德纳设法选择了介于椭圆及超椭圆之间的曲线(两者都用样条函数近似),作为他的Computer Modern字体。1959年时瑞典斯德哥尔摩提出了其市中心赛格尔广场圆环的设计竞赛。丹麦诗人皮亚特·海恩(1905–1996)的设计以是一个n = 2.5,a/b = 6/5的超椭圆为基础。他的说明如下:赛格尔广场在1967年完成,而皮亚特·海恩继续在其他的艺术品中使用超椭圆,包括床、碟子、桌子等。皮亚特·海恩将超椭圆以长轴为轴心旋转,形成了一个立体的超级蛋(英语:superegg),其特点是可以平面上直立,不会倒下,因此变成一个特别的玩具。1968年在巴黎在为越战谈判时,谈判者不满意谈判桌的外形,Balinski、Kieron Underwood及Holt在一封寄给纽约时报的信件中建议以超椭圆作为谈判桌的外形。1968年由墨西哥城主办奥运时,也以超椭圆为阿兹特克体育场的外形。托布勒(英语:Waldo R. Tobler)在1973年提出了托布勒超椭圆投影(英语:Tobler hyperelliptical projection),其中的经线就是用超椭圆来表示。美式足球球队匹兹堡钢人的标志是三个相连的超椭圆。
相关
- 乌尔大陆乌尔大陆(Ur)是个史前大陆,存在于30亿年前的太古代。其名称是以希腊神话中的乌拉诺斯(Uranus)为名。乌尔大陆可能是目前已知最早的大陆,年代比北极大陆早5亿年,但也可能晚于36到31
- Taenia solium猪带绦虫(学名:Taenia solium;pork tapeworm),也称有钩绦虫或链状带绦虫,体长2-3米,宽7-8毫米,共有800-900个节片,后端成熟节片长约10毫米。
- 漆书陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧ 小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧ 书法 ‧ 飞白书笔画 ‧
- 知识知识是对某个主题确信的认识,并且这些认识拥有潜在的能力为特定目的而使用。意指透过经验或联想,而能够熟悉进而了解某件事情;这种事实或状态就称为知识,其包括认识或了解某种科
- 伊凡雷帝伊凡四世·瓦西里耶维奇(俄语:Иван IV Васильевич,1530年8月25日-1584年3月18日),又被称为伊凡雷帝(俄语:Иван Грозный),俄罗斯沙皇国的开创者。留里克王朝
- 放射虫放射虫门(学名:Radiozoa)又名放线虫,为海中浮游生物,有如球形对称,带有硅壳,壳上有美丽的花纹。身体内有膜质中央囊,囊面穿有许多小孔,将身体分为内外两部分,外部被胶状物质,多有液泡,内
- 自然界的艺术形态《自然界的艺术形态》(德语:Kunstformen der Natur)是由德国医生、比较解剖学、生物学家恩斯特·海克尔所出版的平板印刷插画图鉴。海克尔的生物插画最早从1899年开始以十张的
- 克劳斯·冯·克利钦克劳斯·冯·克利青(德语:Klaus von Klitzing,1943年6月28日-),德国物理学家。他因于1980年2月5日在格勒诺布尔高强度磁场实验室发现量子霍尔效应而获1985年诺贝尔物理学奖。冯·
- 妙翅迦楼罗(梵语:गरुड,转写:Garuḍa;巴利语:Garuḷa),又音译作揭路荼、迦娄罗、蘗噜拏、羯路荼、迦留罗、迦喽荼,伽楼罗、誐噜拏,汉译大鹏金翅鸟、金翅鸟、妙翅鸟、大鹏仙,原是印度神话
- 东森新闻台东森新闻台(台标标示为EBC东森新闻),是东森电视旗下的新闻频道。2018年12月,《镜周刊》报导傅崐萁在担任花莲县长任内共发包25个县府媒体采购案,然而采购案得标者皆为花莲在地媒
