超椭圆

✍ dations ◷ 2025-12-02 07:43:28 #超椭圆
超椭圆(superellipse)也称为拉梅曲线(Lamé curve),是在笛卡儿坐标系下满足以下方程式的点的集合:其中n、a及b为正数。上述方程式的解会是一个在−a ≤ x ≤ +a及−b ≤ y ≤ +b长方形内的封闭曲线,参数a及b称为曲线的半直径(semi-diameters)。n在0和1之间时,超椭圆的图形类似一个曲线的四角星,四边的曲线往内凹。n为1时,超椭圆的图形为一菱形,四个顶点为(±a, 0)及(0, ±b)。n在1和2之间时,超椭圆的图形类似菱形,四个顶点位置相同,但四边是往外凸的曲线,越接近顶点,曲线的曲率越大,顶点的曲率趋近无限大。n为2时,超椭圆的图形即为椭圆(若a = b时则为一个圆形)。当n大于2时,超椭圆的图形看似四角有圆角(英语:Chamfer)的长方形,曲线的曲率在(±a, 0)及(0, ±b)四点为0。n为4的超椭圆也称为方圆形。n < 2的超椭圆也称为次椭圆(hypoellipse),n > 2的超椭圆则称为过椭圆(hyperellipse)。当n ≥ 1,且a = b=1时的超椭圆是二维Lp空间下的单位圆,n即为其p-范数。超椭圆的极点为(±a, 0)及(0, ±b),而其四个“角”为(±sa, ±sb),其中 s = 2 − 1 n {displaystyle s=2^{-{frac {1}{n}}}} 。当n为一个非零的有理数p/q(最简分数形式),则超椭圆为一平面代数曲线。若n为正数,其曲线次数为pq,若n为负数,其曲线次数为2pq。若a和b均为1且n为偶数,则此超椭圆为一n次的费马曲线(英语:Fermat curve),此时超椭圆没有奇点,但一般而言超椭圆中会有有奇点。超椭圆的参数方程如下:或超椭圆内的面积可以用Γ函数Γ(x)来表示:其垂足曲线较容易计算,而以下曲线的垂足曲线可以用极坐标方式来表示:超椭圆可以延伸为以下的形式:或其中的 θ {displaystyle theta } 不是表示角度,只是方程式的一个参数。超椭圆在笛卡儿坐标系下的表示式是由1795年出生的法国数学家加布里埃尔·拉梅,由椭圆的方程式扩展而得。字体设计师赫尔曼·察普夫在1952年设计的Melior(英语:Melior)字体,利用超椭圆作为字母o的外形。三十年后高德纳设法选择了介于椭圆及超椭圆之间的曲线(两者都用样条函数近似),作为他的Computer Modern字体。1959年时瑞典斯德哥尔摩提出了其市中心赛格尔广场圆环的设计竞赛。丹麦诗人皮亚特·海恩(1905–1996)的设计以是一个n = 2.5,a/b = 6/5的超椭圆为基础。他的说明如下:赛格尔广场在1967年完成,而皮亚特·海恩继续在其他的艺术品中使用超椭圆,包括床、碟子、桌子等。皮亚特·海恩将超椭圆以长轴为轴心旋转,形成了一个立体的超级蛋(英语:superegg),其特点是可以平面上直立,不会倒下,因此变成一个特别的玩具。1968年在巴黎在为越战谈判时,谈判者不满意谈判桌的外形,Balinski、Kieron Underwood及Holt在一封寄给纽约时报的信件中建议以超椭圆作为谈判桌的外形。1968年由墨西哥城主办奥运时,也以超椭圆为阿兹特克体育场的外形。托布勒(英语:Waldo R. Tobler)在1973年提出了托布勒超椭圆投影(英语:Tobler hyperelliptical projection),其中的经线就是用超椭圆来表示。美式足球球队匹兹堡钢人的标志是三个相连的超椭圆。

相关

  • 肌炎肌肉发炎(英语:Myositis)指的是肌肉发炎或肿胀。受伤、药物、感染、或自体免疫疾病都有可能导致肌肉发炎。 目前已知降脂药物羟甲基戊二酸单酰辅酶A还原酶抑制剂和fibrate(英语:f
  • 黄体制剂黄体制剂(英语:Progestin)是一种合成的孕激素,与孕酮有类似效果。Progestin的两种最重要用途为激素避孕(英语:Hormonal contraception)(独立或与雌激素一同使用)以及作为激素替代疗法
  • 布达佩斯布达佩斯(匈牙利语:Budapest,发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium"
  • 巴拿马地峡巴拿马地峡(西班牙语:Istmo de Panamá),是美洲中部的一个地峡,从哥斯达黎加边界延伸至哥伦比亚边界,连接南、北美洲。地峡从达连至奇里基全长约640公里。1513年9月25日,西班牙人巴
  • 复层立方上皮复层立方上皮(英语:stratified cuboidal epithelium,拉丁语:Epithelium stratificatum cuboideum)为被覆上皮的一种。顾名思义,该种组织由多层立方形的细胞构成。复层立方上皮可见
  • 110110 数学 120 信息科学与系统科学 130 力学 140 物理学 150 化学 160 天文学 170 地球科学 180 生物学210 农学 220 林学 230 畜牧、兽医科学 240 水产学310 
  • 韦尔斯利韦尔斯利镇(英语:Wellesley)是美国马萨诸塞州诺福克县中的一个镇。据美国2000年人口普查,该镇的人口为26,613。坐标:42°18′23″N 71°17′16″W / 42.306263°N 71.287772°W /
  • 基因组印记基因铭印(英语:Genomic imprinting)又译遗传印记或遗传铭印(genetic imprinting)是一种遗传学现象,指只有来自特定亲代的基因得以表达,而不遵从孟德尔定律依靠单亲传递某些遗传学性
  • 2002 AAsub29/sub2002 AA29是一颗近地小行星,于2002年1月9日由丽妮儿小组发现。该天体的公转轨道与地球接近,并以“马蹄铁轨道”形式公转,每95年会被地球超越一圈。据观测,它在未来600年内可能会
  • 汉斯·阿斯伯格汉斯·阿斯佩尔格尔(Hans Asperger;1906年2月18日-1980年10月21日,又译亚斯伯格、亚斯柏格、亚氏保加等)是奥地利的儿科医生及精神病专家,亞斯伯格症候群就是以他的姓氏来命名的疾