超椭圆

✍ dations ◷ 2025-01-25 02:37:26 #超椭圆
超椭圆(superellipse)也称为拉梅曲线(Lamé curve),是在笛卡儿坐标系下满足以下方程式的点的集合:其中n、a及b为正数。上述方程式的解会是一个在−a ≤ x ≤ +a及−b ≤ y ≤ +b长方形内的封闭曲线,参数a及b称为曲线的半直径(semi-diameters)。n在0和1之间时,超椭圆的图形类似一个曲线的四角星,四边的曲线往内凹。n为1时,超椭圆的图形为一菱形,四个顶点为(±a, 0)及(0, ±b)。n在1和2之间时,超椭圆的图形类似菱形,四个顶点位置相同,但四边是往外凸的曲线,越接近顶点,曲线的曲率越大,顶点的曲率趋近无限大。n为2时,超椭圆的图形即为椭圆(若a = b时则为一个圆形)。当n大于2时,超椭圆的图形看似四角有圆角(英语:Chamfer)的长方形,曲线的曲率在(±a, 0)及(0, ±b)四点为0。n为4的超椭圆也称为方圆形。n < 2的超椭圆也称为次椭圆(hypoellipse),n > 2的超椭圆则称为过椭圆(hyperellipse)。当n ≥ 1,且a = b=1时的超椭圆是二维Lp空间下的单位圆,n即为其p-范数。超椭圆的极点为(±a, 0)及(0, ±b),而其四个“角”为(±sa, ±sb),其中 s = 2 − 1 n {displaystyle s=2^{-{frac {1}{n}}}} 。当n为一个非零的有理数p/q(最简分数形式),则超椭圆为一平面代数曲线。若n为正数,其曲线次数为pq,若n为负数,其曲线次数为2pq。若a和b均为1且n为偶数,则此超椭圆为一n次的费马曲线(英语:Fermat curve),此时超椭圆没有奇点,但一般而言超椭圆中会有有奇点。超椭圆的参数方程如下:或超椭圆内的面积可以用Γ函数Γ(x)来表示:其垂足曲线较容易计算,而以下曲线的垂足曲线可以用极坐标方式来表示:超椭圆可以延伸为以下的形式:或其中的 θ {displaystyle theta } 不是表示角度,只是方程式的一个参数。超椭圆在笛卡儿坐标系下的表示式是由1795年出生的法国数学家加布里埃尔·拉梅,由椭圆的方程式扩展而得。字体设计师赫尔曼·察普夫在1952年设计的Melior(英语:Melior)字体,利用超椭圆作为字母o的外形。三十年后高德纳设法选择了介于椭圆及超椭圆之间的曲线(两者都用样条函数近似),作为他的Computer Modern字体。1959年时瑞典斯德哥尔摩提出了其市中心赛格尔广场圆环的设计竞赛。丹麦诗人皮亚特·海恩(1905–1996)的设计以是一个n = 2.5,a/b = 6/5的超椭圆为基础。他的说明如下:赛格尔广场在1967年完成,而皮亚特·海恩继续在其他的艺术品中使用超椭圆,包括床、碟子、桌子等。皮亚特·海恩将超椭圆以长轴为轴心旋转,形成了一个立体的超级蛋(英语:superegg),其特点是可以平面上直立,不会倒下,因此变成一个特别的玩具。1968年在巴黎在为越战谈判时,谈判者不满意谈判桌的外形,Balinski、Kieron Underwood及Holt在一封寄给纽约时报的信件中建议以超椭圆作为谈判桌的外形。1968年由墨西哥城主办奥运时,也以超椭圆为阿兹特克体育场的外形。托布勒(英语:Waldo R. Tobler)在1973年提出了托布勒超椭圆投影(英语:Tobler hyperelliptical projection),其中的经线就是用超椭圆来表示。美式足球球队匹兹堡钢人的标志是三个相连的超椭圆。

相关

  • 朗格汉斯细胞朗格汉斯细胞(又称兰氏细胞)是在皮肤和黏膜的树状细胞(抗原呈递细胞),其中含有称作伯贝克颗粒(英语:Birbeck granules)的胞器,在上皮中的任何一层都有朗格汉斯细胞,不过主要是在棘状
  • Bk5f9 7s22, 8, 18, 32, 27, 8, 2主条目:锫的同位素锫(台湾称鉳;英语:Berkelium)是一种放射性化学元素,符号为Bk,原子序为97,属于锕系元素和超铀元素。位于美国加州伯克利的劳伦斯伯克
  • 人工电子耳人工耳蜗,亦称为“人工电子耳”,是一种植入式听觉辅助设备,其功能是使重度失聪的病人(聋人)产生一定的声音知觉。与助听器等其它类型的听觉辅助设备不同,人工耳蜗的工作原理不是放
  • 色盲色盲(英语:Color blindness),又称色觉辨认障碍(英语:Color vision deficiency),是指看见颜色及辨别颜色的能力减退的状况。色盲有可能造成学习困难 ,购买水果、挑选衣物,及辨识交通号
  • 营养学系营养学系简称营养系,主要的目的在培养营养学专业人才,提升营养专业品质。营养学系的专业科目包含了医院各科病人的营养教学和营养师实习。由营养学系(科)毕业的毕业生,通过国家考
  • 马祖坐标:26°09′04″N 119°55′38″E / 26.15111°N 119.92722°E / 26.15111; 119.92722马祖列岛(闽东语平话字:Mā-cū Liĕk-dō̤)是隶属中华民国的群岛,位于台湾海峡正北方,面
  • 时间反演对称时间反演对称(T-symmetry or time reversal symmetry)描述的是在时间反演 T : t ↦ − t
  • 死神少女《死神少女》(英文:Gloomy Salad Days)是公视拥抱青春灵魂最深处三部曲之二部曲。由《漂浪青春》周美玲导演。2010年4月27日举行开拍记者会,公视于2010年10月9日晚间9点首播。周
  • 林口台地林口台地,台湾北部的一个地理区域,亦称坪顶台地,别称坪顶、大坪顶、平顶山等。位于台北盆地西侧,北临台湾海峡,东北以淡水河为界,与大屯火山群相望;西以南老溪溪口至莺歌为界,与桃园
  • 韩国期货交易所韩国期货交易所(简称KOFEX)是位于韩国釜山广域市的综合性期货、期权交易所,成立于1999年。2004年1月,所有韩国综合股价指数指数期货及期权交易从韩国证券交易所(KSE)移转至韩国期