霍奇对偶

✍ dations ◷ 2024-09-20 10:41:28 #微分形式,黎曼几何,对偶理论

数学中,霍奇星算子(Hodge star operator)或霍奇对偶(Hodge dual)由苏格兰数学家威廉·霍奇(英语:W. V. D. Hodge)(Hodge)引入的一个重要的线性映射。它定义在有限维定向内积空间的外代数上。

霍奇星算子在 -形式空间与 ( -)-形式空间建立了一个对应。一个 -形式在这个对于下的像称为这个 -形式的霍奇对偶。-形式空间的维数是

后一个空间的维数是

又由二项式系数的对称性,这两个维数事实上相等。两个具有相同维数的形式空间总同构;但不一定有一种自然或典范的方式。但霍奇对偶性利用了向量空间内积和定向,给出了一个特定的同构,因此在代数上这反应了二项式系数的性质。这也在 -形式空间上诱导了一个内积。“自然”定义意味着这个对偶性关系在理论中可起几何作用。

第一个有趣的情形是在三维欧几里得空间 。在这种情形,帕斯卡三角形相关行是

霍奇对偶在两个三维空间之间建立起一个同构,一个是 自己,另一个是 中两个向量的楔积。具体细节参见例子一节。叉积只是三维的特殊性质,但霍奇对偶在所有维数都有效。

由于一个向量空间上 个变量的交错线性形式空间自然同构于那个向量空间上的 -向量空间的对偶,霍奇对偶也能对这些空间定义。与线性代数的大部分构造一样,霍奇对偶可以扩张到一个向量丛。这样的霍奇对偶特别常见的是在余切丛的外代数(即流形上的微分形式)上,可用来从外导数构造余微分(codifferential),以及拉普拉斯-德拉姆算子,它导致了紧黎曼流形上微分形式的霍奇分解。

一个定向内积向量空间 上的霍奇星算子是 的外代数( Λ ( V ) {\displaystyle \Lambda (V)} -向量子空间( Λ k ( V ) {\displaystyle \Lambda ^{k}(V)} )-向量子空间( Λ n k ( V ) {\displaystyle \Lambda ^{n-k}(V)} -形式与 -维完全反对称列维-奇维塔张量的指标得到。这不同于列维-奇维塔符号有一个额外因子 (det )½,这里 是一个内积(如果 不是正定的,比如洛伦兹流形的切空间,则取行列式的绝对值)。

从而有

这里 η 是任意一个反对称 阶张量。利用在定义列维-奇维塔张量中同一个内积 上升和下降指标。当然也可以对任何张量取星号,所得是反对称的,因为张量的对称分量在与完全反对称列维-奇维塔张量缩并时完全抵消了。

星算子一个常见例子是在 = 3,可以做为 3 维向量与斜对称矩阵之间的对应。这不明显地使用于向量分析中,例如由两个向量的楔积产生叉积向量。具体地说,对欧几里得空间 R3,容易发现

以及

这里 d、d 与 d 是 R3 上的标准正交微分1-形式。霍奇对偶在此情形显然对应于三维中的叉积。

当 = 4 时,霍奇对偶作用在第二外幂(6 维)上是自同态。它是一个对合,从而可以分解为子对偶与反自对偶子空间,在这两个子空间上的作用分别为 +1 和 -1。

另一个有用的例子是 = 4 闵可夫斯基时空,具有度量符号为 (+,-,-,-,) 与坐标 (),对1-形式有

对2-形式有

霍奇对偶在 -向量空间上诱导了一个内积,即在 的外代数上。给定两个 -向量 η {\displaystyle \eta } 的正交基元素的楔积组成了 的外代数的一个正交基。当霍奇星号扩张到流形上,可以证明体积形式能写做

其中 g i j {\displaystyle g_{ij}} -维空间 上一个 -向量 η Λ k ( V ) {\displaystyle \eta \in \Lambda ^{k}(V)} 与 上内积的符号有关。具体说, 是内积张量行列式的符号。例如,如果 = 4 时,若内积的符号是 (+,-,-,-) 或 (-,+,+,+) 则 = -1。对普通的欧几里得空间,符号总是正的,所以 = +1。在普通向量空间,这一般不是一个问题。当霍奇星号扩张到伪-黎曼流形上时,上面的内积理解为对角形式的度量。

在一个 -维定向黎曼或伪黎曼流形上每一点的切空间上可以重复如上构造,将得到 -形式的霍奇对偶,是一个 形式。霍奇星号在流形上的微分形式上诱导了一个 L2-范数。对 Λ k ( M ) {\displaystyle \Lambda ^{k}(M)} -形式。)

更一般地,在非定向情形,我们可以定义 -形式的霍奇星号维一个 ()-伪微分形式;即取值于典范线丛的一个微分形式。

霍奇星号在流形上最重要的应用是用来定义余微分 δ。令

这里 是外导数。对黎曼流形 = +1 。

相比于外导数,余微分不是外代数上的反导子。

余微分在是外微分的伴随:

这个恒等式是因为体积形式 ω 满足 ω = 0,从而

拉普拉斯–德拉姆算子由

给出,是霍奇理论的核心。它有对称性:

以及非负:

霍奇星号将一个调和形式变成调和形式。作为霍奇定理的一个推论,德拉姆上同调自然同构于调和 -形式空间,从而霍奇星号诱导了上同调群之间一个同构

通过庞加莱对偶性,这给出了 k() 与它的对偶空间的一个典范等价。

{\displaystyle \ast } 算子与外导数 d {\displaystyle d} 的组合推广了三维经典算子 grad、curl 和 div。具体做法如下: d {\displaystyle d} 将一个 0-形式(函数)变成 1-形式,1-形式变成 2-形式,2-形式变成 3-形式(应用到 3-形式变成零)。

1. 对一个 0-形式( ω = f ( x , y , z ) {\displaystyle \omega =f(x,y,z)} ),第一种情形,写成分量与 grad {\displaystyle \operatorname {grad} } 算子等价:

2. 第二种情形后面跟着 {\displaystyle \ast } ,是 1-形式( ω = A d x + B d y + C d z {\displaystyle \omega =Adx+Bdy+Cdz} )上一个算子,其分量是 curl {\displaystyle \operatorname {curl} } 算子:

使用霍奇星号给出:

3. 最后一种情形,前面与后面都有一个 {\displaystyle \ast } ,将一个 1-形式( ω = A d x + B d y + C d z {\displaystyle \omega =Adx+Bdy+Cdz} )变成 0-形式(函数);写成分量是 div {\displaystyle \operatorname {div} } 算子:

这些表达式的一个好处是恒等式 d 2 = 0 {\displaystyle d^{2}=0} ,任何情形都成立,将

统一起来了。特别地,麦克斯韦方程组用外导数与霍奇星号表示时,有一个特别简单和优美的形式:

这里 F {\displaystyle \mathbf {F} } 是四维洛伦兹时空中某个 2-形式, J {\displaystyle \mathbf {J} } 是电流 3-形式。

相关

  • 泰坦巨蟒泰坦巨蚺属(学名:Titanoboa,意即“极大的蚺蛇”)是一个生活在古新世(约 6,000 至 5,800 万年前)的无毒、肉食性蚺类。已知的唯一种塞雷洪泰坦巨蚺(T. cerrejonensis)也是已知最大的
  • 约瑟夫·德迈斯特约瑟夫·德·迈斯特伯爵(法语:Le comte Joseph de Maistre,1753年-1821年),是萨伏依的哲学家、作家、律师及外交官。在法国大革命之后的那段期间,他挺身为阶级社会与君主制辩护。迈
  • 埃尔斯米尔岛埃尔斯米尔岛(英语:Ellesmere Island),加拿大北极群岛中最北岛屿,世界第十大岛,面积196,235平方公里,南为巴芬岛,与东边的格陵兰岛仅隔一条狭窄的内尔斯海峡。目前属加拿大努那福特
  • 粤语用辞粤语用辞,列举常见的粤语用词,并使用传统粤语用字。中国南北说话腔调、发音、用词都差天共地。现时国语以北方话为基本方言,主流文化写粤语的传统已经减弱,以致廿世纪末新一代的
  • 加利福尼亚路德大学加利福尼亚路德大学(California Lutheran University,简称:CLU或Cal Lutheran)是位于美国加利福尼亚州绍曾德奥克斯的一所私立大学,由美国福音信义会创立于1959年。成立不久之后
  • 关 峡关峡(1957年6月-),男,满族,河南开封人,中华人民共和国音乐家,国家一级作曲。1985年毕业于中央音乐学院。历任中国交响乐团团长、党委副书记、2015年8月任中国音乐家协会副主席等职。
  • 89<< 80818283848586878889>> 89是88和90之间的自然数。
  • 圣彼得堡铸币厂圣彼得堡铸币厂(俄语:Санкт-Петербу́ргский моне́тный двор)是世界最大的造币厂之一,由彼得大帝创建于1724年,也是圣彼得堡历史最悠久的企业之
  • 库斯卡坦辛戈库斯卡坦辛戈(西班牙语:Cuscatancingo),是萨尔瓦多的城镇,位于该国中西部,由圣萨尔瓦多省负责管辖,面积5.40平方公里,海拔高度603米,2007年人口66,400,人口密度每平方公里12,296.3人。
  • 红珊藤目红珊藤目(学名:Berberidopsidales)又名智利藤目,是真双子叶植物的一个目,位于核心真双子叶植物的分支之中,只有2科3属4种。红珊藤目是2001年以来才被提出的分类,用以包含当时地位未