霍奇对偶

✍ dations ◷ 2025-04-26 14:06:27 #微分形式,黎曼几何,对偶理论

数学中,霍奇星算子(Hodge star operator)或霍奇对偶(Hodge dual)由苏格兰数学家威廉·霍奇(英语:W. V. D. Hodge)(Hodge)引入的一个重要的线性映射。它定义在有限维定向内积空间的外代数上。

霍奇星算子在 -形式空间与 ( -)-形式空间建立了一个对应。一个 -形式在这个对于下的像称为这个 -形式的霍奇对偶。-形式空间的维数是

后一个空间的维数是

又由二项式系数的对称性,这两个维数事实上相等。两个具有相同维数的形式空间总同构;但不一定有一种自然或典范的方式。但霍奇对偶性利用了向量空间内积和定向,给出了一个特定的同构,因此在代数上这反应了二项式系数的性质。这也在 -形式空间上诱导了一个内积。“自然”定义意味着这个对偶性关系在理论中可起几何作用。

第一个有趣的情形是在三维欧几里得空间 。在这种情形,帕斯卡三角形相关行是

霍奇对偶在两个三维空间之间建立起一个同构,一个是 自己,另一个是 中两个向量的楔积。具体细节参见例子一节。叉积只是三维的特殊性质,但霍奇对偶在所有维数都有效。

由于一个向量空间上 个变量的交错线性形式空间自然同构于那个向量空间上的 -向量空间的对偶,霍奇对偶也能对这些空间定义。与线性代数的大部分构造一样,霍奇对偶可以扩张到一个向量丛。这样的霍奇对偶特别常见的是在余切丛的外代数(即流形上的微分形式)上,可用来从外导数构造余微分(codifferential),以及拉普拉斯-德拉姆算子,它导致了紧黎曼流形上微分形式的霍奇分解。

一个定向内积向量空间 上的霍奇星算子是 的外代数( Λ ( V ) {\displaystyle \Lambda (V)} -向量子空间( Λ k ( V ) {\displaystyle \Lambda ^{k}(V)} )-向量子空间( Λ n k ( V ) {\displaystyle \Lambda ^{n-k}(V)} -形式与 -维完全反对称列维-奇维塔张量的指标得到。这不同于列维-奇维塔符号有一个额外因子 (det )½,这里 是一个内积(如果 不是正定的,比如洛伦兹流形的切空间,则取行列式的绝对值)。

从而有

这里 η 是任意一个反对称 阶张量。利用在定义列维-奇维塔张量中同一个内积 上升和下降指标。当然也可以对任何张量取星号,所得是反对称的,因为张量的对称分量在与完全反对称列维-奇维塔张量缩并时完全抵消了。

星算子一个常见例子是在 = 3,可以做为 3 维向量与斜对称矩阵之间的对应。这不明显地使用于向量分析中,例如由两个向量的楔积产生叉积向量。具体地说,对欧几里得空间 R3,容易发现

以及

这里 d、d 与 d 是 R3 上的标准正交微分1-形式。霍奇对偶在此情形显然对应于三维中的叉积。

当 = 4 时,霍奇对偶作用在第二外幂(6 维)上是自同态。它是一个对合,从而可以分解为子对偶与反自对偶子空间,在这两个子空间上的作用分别为 +1 和 -1。

另一个有用的例子是 = 4 闵可夫斯基时空,具有度量符号为 (+,-,-,-,) 与坐标 (),对1-形式有

对2-形式有

霍奇对偶在 -向量空间上诱导了一个内积,即在 的外代数上。给定两个 -向量 η {\displaystyle \eta } 的正交基元素的楔积组成了 的外代数的一个正交基。当霍奇星号扩张到流形上,可以证明体积形式能写做

其中 g i j {\displaystyle g_{ij}} -维空间 上一个 -向量 η Λ k ( V ) {\displaystyle \eta \in \Lambda ^{k}(V)} 与 上内积的符号有关。具体说, 是内积张量行列式的符号。例如,如果 = 4 时,若内积的符号是 (+,-,-,-) 或 (-,+,+,+) 则 = -1。对普通的欧几里得空间,符号总是正的,所以 = +1。在普通向量空间,这一般不是一个问题。当霍奇星号扩张到伪-黎曼流形上时,上面的内积理解为对角形式的度量。

在一个 -维定向黎曼或伪黎曼流形上每一点的切空间上可以重复如上构造,将得到 -形式的霍奇对偶,是一个 形式。霍奇星号在流形上的微分形式上诱导了一个 L2-范数。对 Λ k ( M ) {\displaystyle \Lambda ^{k}(M)} -形式。)

更一般地,在非定向情形,我们可以定义 -形式的霍奇星号维一个 ()-伪微分形式;即取值于典范线丛的一个微分形式。

霍奇星号在流形上最重要的应用是用来定义余微分 δ。令

这里 是外导数。对黎曼流形 = +1 。

相比于外导数,余微分不是外代数上的反导子。

余微分在是外微分的伴随:

这个恒等式是因为体积形式 ω 满足 ω = 0,从而

拉普拉斯–德拉姆算子由

给出,是霍奇理论的核心。它有对称性:

以及非负:

霍奇星号将一个调和形式变成调和形式。作为霍奇定理的一个推论,德拉姆上同调自然同构于调和 -形式空间,从而霍奇星号诱导了上同调群之间一个同构

通过庞加莱对偶性,这给出了 k() 与它的对偶空间的一个典范等价。

{\displaystyle \ast } 算子与外导数 d {\displaystyle d} 的组合推广了三维经典算子 grad、curl 和 div。具体做法如下: d {\displaystyle d} 将一个 0-形式(函数)变成 1-形式,1-形式变成 2-形式,2-形式变成 3-形式(应用到 3-形式变成零)。

1. 对一个 0-形式( ω = f ( x , y , z ) {\displaystyle \omega =f(x,y,z)} ),第一种情形,写成分量与 grad {\displaystyle \operatorname {grad} } 算子等价:

2. 第二种情形后面跟着 {\displaystyle \ast } ,是 1-形式( ω = A d x + B d y + C d z {\displaystyle \omega =Adx+Bdy+Cdz} )上一个算子,其分量是 curl {\displaystyle \operatorname {curl} } 算子:

使用霍奇星号给出:

3. 最后一种情形,前面与后面都有一个 {\displaystyle \ast } ,将一个 1-形式( ω = A d x + B d y + C d z {\displaystyle \omega =Adx+Bdy+Cdz} )变成 0-形式(函数);写成分量是 div {\displaystyle \operatorname {div} } 算子:

这些表达式的一个好处是恒等式 d 2 = 0 {\displaystyle d^{2}=0} ,任何情形都成立,将

统一起来了。特别地,麦克斯韦方程组用外导数与霍奇星号表示时,有一个特别简单和优美的形式:

这里 F {\displaystyle \mathbf {F} } 是四维洛伦兹时空中某个 2-形式, J {\displaystyle \mathbf {J} } 是电流 3-形式。

相关

  • 郑成功郑成功(1624年8月27日-1662年6月23日),原名森,字明俨、大木,幼名福松,为南明政权的重要将领。南明绍宗隆武帝赐明朝国姓朱,赐名成功,世称“国姓爷”(荷兰语:Koxinga),或郑赐姓、郑国姓、
  • 王莽始建国:9年-13年 天凤:14年-19年王莽(前45年-23年10月6日),字巨君,魏郡元城贵乡(今河北邯郸大名县东)人。舜的后代。新朝皇帝。西汉末年政治人物及权臣,之后篡夺皇位并自立新朝。王莽
  • 420110 数学 120 信息科学与系统科学 130 力学 140 物理学 150 化学 160 天文学 170 地球科学 180 生物学210 农学 220 林学 230 畜牧、兽医科学 240 水产学310 
  • 帝国议会帝国议会(拉丁语:Dieta Imperii / Comitium Imperiale; 德语:Reichstag) 是神圣罗马帝国的审议与立法机构。议会成员被称为帝国政治体,并被分为三个议事团。最早起源于中世纪的
  • 工人工人,若指从事某种职业的劳动者,则是体力工,内部称为职员或员工。多指工业生产领域,依靠出卖劳动力获取报酬的人,通常指“体力劳动者”。工人一般指工厂中生产工序的人,除了工厂的
  • 外周循环肿瘤细胞外周循环肿瘤细胞,(Circulating Tumor Cell,简称CTC),指由原发肿瘤或继发肿瘤自发进入或诊断操作带入外周血的肿瘤细胞。具有高活力和转移潜能的CTC可以在循环系统中存活,并在合适
  • 德意志博物馆德意志博物馆(德语:Deutsches Museum)是世界上最大的科技博物馆,位于德国慕尼黑,有50个科学技术领域的大约28,000件展品,每年有大约130万访问者。该博物馆开放于 1903年6月28日,Osk
  • 牡丹峰牡丹峰位于朝鲜民主主义人民共和国首都平壤市中心的牡丹峰区域,知名于其风景名胜,以及政治涵义。它常常与金日成和金正淑的抗日历史联系起来,而金日成1940年代在牡丹峰脚下发表
  • 长野稙藤长野稙藤(1504年—1562年6月6日/1561年1月23日)是日本战国时代于伊势国的战国大名。长野工藤氏第14代当主。父亲是第13代当主长野通藤。在永正元年(1504年)出生。幼名金吾。在永
  • 后宫淳后宫淳(1884年9月28日 - 1973年11月24日)、日本陆军军人,陆军大将军衔。京都府出身。父亲后宫力是农民,后宫淳是第四子。大阪陆军地方幼年学校、中央幼年学校毕业、1905年3月日