霍奇对偶

✍ dations ◷ 2025-02-23 20:21:08 #微分形式,黎曼几何,对偶理论

数学中,霍奇星算子(Hodge star operator)或霍奇对偶(Hodge dual)由苏格兰数学家威廉·霍奇(英语:W. V. D. Hodge)(Hodge)引入的一个重要的线性映射。它定义在有限维定向内积空间的外代数上。

霍奇星算子在 -形式空间与 ( -)-形式空间建立了一个对应。一个 -形式在这个对于下的像称为这个 -形式的霍奇对偶。-形式空间的维数是

后一个空间的维数是

又由二项式系数的对称性,这两个维数事实上相等。两个具有相同维数的形式空间总同构;但不一定有一种自然或典范的方式。但霍奇对偶性利用了向量空间内积和定向,给出了一个特定的同构,因此在代数上这反应了二项式系数的性质。这也在 -形式空间上诱导了一个内积。“自然”定义意味着这个对偶性关系在理论中可起几何作用。

第一个有趣的情形是在三维欧几里得空间 。在这种情形,帕斯卡三角形相关行是

霍奇对偶在两个三维空间之间建立起一个同构,一个是 自己,另一个是 中两个向量的楔积。具体细节参见例子一节。叉积只是三维的特殊性质,但霍奇对偶在所有维数都有效。

由于一个向量空间上 个变量的交错线性形式空间自然同构于那个向量空间上的 -向量空间的对偶,霍奇对偶也能对这些空间定义。与线性代数的大部分构造一样,霍奇对偶可以扩张到一个向量丛。这样的霍奇对偶特别常见的是在余切丛的外代数(即流形上的微分形式)上,可用来从外导数构造余微分(codifferential),以及拉普拉斯-德拉姆算子,它导致了紧黎曼流形上微分形式的霍奇分解。

一个定向内积向量空间 上的霍奇星算子是 的外代数( Λ ( V ) {\displaystyle \Lambda (V)} -向量子空间( Λ k ( V ) {\displaystyle \Lambda ^{k}(V)} )-向量子空间( Λ n k ( V ) {\displaystyle \Lambda ^{n-k}(V)} -形式与 -维完全反对称列维-奇维塔张量的指标得到。这不同于列维-奇维塔符号有一个额外因子 (det )½,这里 是一个内积(如果 不是正定的,比如洛伦兹流形的切空间,则取行列式的绝对值)。

从而有

这里 η 是任意一个反对称 阶张量。利用在定义列维-奇维塔张量中同一个内积 上升和下降指标。当然也可以对任何张量取星号,所得是反对称的,因为张量的对称分量在与完全反对称列维-奇维塔张量缩并时完全抵消了。

星算子一个常见例子是在 = 3,可以做为 3 维向量与斜对称矩阵之间的对应。这不明显地使用于向量分析中,例如由两个向量的楔积产生叉积向量。具体地说,对欧几里得空间 R3,容易发现

以及

这里 d、d 与 d 是 R3 上的标准正交微分1-形式。霍奇对偶在此情形显然对应于三维中的叉积。

当 = 4 时,霍奇对偶作用在第二外幂(6 维)上是自同态。它是一个对合,从而可以分解为子对偶与反自对偶子空间,在这两个子空间上的作用分别为 +1 和 -1。

另一个有用的例子是 = 4 闵可夫斯基时空,具有度量符号为 (+,-,-,-,) 与坐标 (),对1-形式有

对2-形式有

霍奇对偶在 -向量空间上诱导了一个内积,即在 的外代数上。给定两个 -向量 η {\displaystyle \eta } 的正交基元素的楔积组成了 的外代数的一个正交基。当霍奇星号扩张到流形上,可以证明体积形式能写做

其中 g i j {\displaystyle g_{ij}} -维空间 上一个 -向量 η Λ k ( V ) {\displaystyle \eta \in \Lambda ^{k}(V)} 与 上内积的符号有关。具体说, 是内积张量行列式的符号。例如,如果 = 4 时,若内积的符号是 (+,-,-,-) 或 (-,+,+,+) 则 = -1。对普通的欧几里得空间,符号总是正的,所以 = +1。在普通向量空间,这一般不是一个问题。当霍奇星号扩张到伪-黎曼流形上时,上面的内积理解为对角形式的度量。

在一个 -维定向黎曼或伪黎曼流形上每一点的切空间上可以重复如上构造,将得到 -形式的霍奇对偶,是一个 形式。霍奇星号在流形上的微分形式上诱导了一个 L2-范数。对 Λ k ( M ) {\displaystyle \Lambda ^{k}(M)} -形式。)

更一般地,在非定向情形,我们可以定义 -形式的霍奇星号维一个 ()-伪微分形式;即取值于典范线丛的一个微分形式。

霍奇星号在流形上最重要的应用是用来定义余微分 δ。令

这里 是外导数。对黎曼流形 = +1 。

相比于外导数,余微分不是外代数上的反导子。

余微分在是外微分的伴随:

这个恒等式是因为体积形式 ω 满足 ω = 0,从而

拉普拉斯–德拉姆算子由

给出,是霍奇理论的核心。它有对称性:

以及非负:

霍奇星号将一个调和形式变成调和形式。作为霍奇定理的一个推论,德拉姆上同调自然同构于调和 -形式空间,从而霍奇星号诱导了上同调群之间一个同构

通过庞加莱对偶性,这给出了 k() 与它的对偶空间的一个典范等价。

{\displaystyle \ast } 算子与外导数 d {\displaystyle d} 的组合推广了三维经典算子 grad、curl 和 div。具体做法如下: d {\displaystyle d} 将一个 0-形式(函数)变成 1-形式,1-形式变成 2-形式,2-形式变成 3-形式(应用到 3-形式变成零)。

1. 对一个 0-形式( ω = f ( x , y , z ) {\displaystyle \omega =f(x,y,z)} ),第一种情形,写成分量与 grad {\displaystyle \operatorname {grad} } 算子等价:

2. 第二种情形后面跟着 {\displaystyle \ast } ,是 1-形式( ω = A d x + B d y + C d z {\displaystyle \omega =Adx+Bdy+Cdz} )上一个算子,其分量是 curl {\displaystyle \operatorname {curl} } 算子:

使用霍奇星号给出:

3. 最后一种情形,前面与后面都有一个 {\displaystyle \ast } ,将一个 1-形式( ω = A d x + B d y + C d z {\displaystyle \omega =Adx+Bdy+Cdz} )变成 0-形式(函数);写成分量是 div {\displaystyle \operatorname {div} } 算子:

这些表达式的一个好处是恒等式 d 2 = 0 {\displaystyle d^{2}=0} ,任何情形都成立,将

统一起来了。特别地,麦克斯韦方程组用外导数与霍奇星号表示时,有一个特别简单和优美的形式:

这里 F {\displaystyle \mathbf {F} } 是四维洛伦兹时空中某个 2-形式, J {\displaystyle \mathbf {J} } 是电流 3-形式。

相关

  • 热带莽原疏林莽原或译稀树莽原、稀树草原(Taíno阿拉瓦克语:sabana),分布于热带地区的又称热带莽原,主要分布于非洲、巴西和澳大利亚的部分地区,草类高大茂密,稀疏的林木散布其间。高温而有
  • 米德尔斯伯勒米德尔斯伯勒(Middlesbrough,i/ˈmɪdəlzbrə/ MID-əlz-brə)是位于英国东北部的一座城市。在行政上属英格兰北约克郡的米德尔斯伯勒区。市区人口约有14万人。米德尔斯伯勒地
  • 中台湾中台湾是台湾中部的简称。其为台湾西部平原的起始地带,是台湾的农业重镇,同时也是台湾中小企业与精密机械最重要的聚集地,巨大机械(捷安特)、台中精机、宝成集团、汉翔航空工业等
  • 梵蒂冈广播电台坐标:41°54′14″N 12°27′0″E / 41.90389°N 12.45000°E / 41.90389; 12.45000梵蒂冈广播电台梵蒂冈新闻网(意大利语:Radio Vaticana;拉丁语:Statio Radiophonica Vaticana),
  • 波德postal_code_type 邮编 人博尔德(Boulder /ˈboʊldər/),又称圆石市,是美国科罗拉多州的一个城市,位于州府丹佛西北,是博尔德县县治。面积65.7平方公里,2010年人口97385人
  • 洞宫山洞宫山,位于中国浙江省南部,为武夷山之余脉,为西南-东北走向,西接鹫峰山。主要由安山岩、流纹岩和花岗岩构成。海拔在1000-1500米之间,主峰为百山祖,海拔1857米。其最高峰为黄茅尖,
  • 051B型导弹驱逐舰051B型驱逐舰(北约代号:旅海级;英语:),是中国大连造船厂为中国人民解放军海军建造的一型多用途导弹驱逐舰,造价约20亿人民币。该型舰是中国人民解放军海军尝试建造大型化、模块化水
  • 雅克·科里尔雅克·科里尔(英语:Jacob Collier,1994年8月2日-)是一名英国创作歌手、词曲作家、编曲家、音乐制作人与多乐器演奏家,由家乡英格兰伦敦发迹。2011年,雅克开始在网络上发布自己的音
  • 本杰明·N·卡多佐本杰明·内森·卡多佐(英语:Benjamin Nathan Cardozo,1870年5月24日-1938年7月9日)是位美国法学家,曾任纽约上诉法院法官和美国最高法院大法官。卡多佐对美国二十世纪法律发展产生
  • 三浦研一三浦研一(1963年8月31日-),日本男演员,出生于日本东京江户川区,常年参与中国电视、电影演出,扮演日本人角色。三浦研一出生于日本东京,幼年时随父亲旅居美国华盛顿,1969年返回日本就