外心

✍ dations ◷ 2025-04-26 12:10:47 #外心
在数学中,一个二维平面上的多边形的外接圆是一个使得该多边形的所有顶点都在其上的圆形,这时称这个多边形为圆内接多边形,外接圆的圆心被称为该多边形的外心。一个多边形至多有一个外接圆,也就是说对于一个多边形,它的外接圆,如果存在的话,是唯一的。并非所有的多边形都有外接圆。三角形和正多边形一定有外接圆。拥有外接圆的四边形被称为圆内接四边形。任何三角形都有外接圆。三角形外心的位置在三角形的三条边的垂直平分线的交点上,到三个顶点的距离都相等(等于外接圆的半径),而且:若以R表示三角形外接圆半径,那么根据正弦定理, a sin ⁡ A = b sin ⁡ B = c sin ⁡ C = 2 R {displaystyle {frac {a}{sin A}}={frac {b}{sin B}}={frac {c}{sin C}}=2R} 。 若以"S"表示三角形面积,由于 S = 1 2 a b sin ⁡ C {displaystyle S={frac {1}{2}}absin C} ,整理得到 R = a b c 4 S {displaystyle R={frac {abc}{4S}}} 。过三点圆的方程为 | x 2 + y 2 x y 1 x 1 2 + y 1 2 x 1 y 1 1 x 2 2 + y 2 2 x 2 y 2 1 x 3 2 + y 3 2 x 3 y 3 1 | = 0 {displaystyle {begin{vmatrix}x^{2}+y^{2}&x&y&1\x_{1}^{2}+y_{1}^{2}&x_{1}&y_{1}&1\x_{2}^{2}+y_{2}^{2}&x_{2}&y_{2}&1\x_{3}^{2}+y_{3}^{2}&x_{3}&y_{3}&1end{vmatrix}}=0} ,故三角形外心坐标为 ( | x 1 2 + y 1 2 y 1 1 x 2 2 + y 2 2 y 2 1 x 3 2 + y 3 2 y 3 1 | 2 | x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 | , | x 1 x 1 2 + y 1 2 1 x 2 x 2 2 + y 2 2 1 x 3 x 3 2 + y 3 2 1 | 2 | x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 | ) {displaystyle ({frac {begin{vmatrix}x_{1}^{2}+y_{1}^{2}&y_{1}&1\x_{2}^{2}+y_{2}^{2}&y_{2}&1\x_{3}^{2}+y_{3}^{2}&y_{3}&1end{vmatrix}}{2{begin{vmatrix}x_{1}&y_{1}&1\x_{2}&y_{2}&1\x_{3}&y_{3}&1end{vmatrix}}}},{frac {begin{vmatrix}x_{1}&x_{1}^{2}+y_{1}^{2}&1\x_{2}&x_{2}^{2}+y_{2}^{2}&1\x_{3}&x_{3}^{2}+y_{3}^{2}&1end{vmatrix}}{2{begin{vmatrix}x_{1}&y_{1}&1\x_{2}&y_{2}&1\x_{3}&y_{3}&1end{vmatrix}}}})}圆内接四边形对角互补,其面积A可以用婆罗摩笈多公式求得: A = ( s − a ) ( s − b ) ( s − c ) ( s − d ) {displaystyle A={sqrt {(s-a)(s-b)(s-c)(s-d)}}} ,其中a, b, c, d为四边的长度,s为半周长。其外接圆半径为: R = ( a c + b d ) ( a d + b c ) ( a b + c d ) 4 A {displaystyle R={frac {sqrt {(ac+bd)(ad+bc)(ab+cd)}}{4A}}} 。边长相等的四边形中,以圆内接四边形最大。所有的正多边形都有外接圆,外接圆的圆心和正多边形的中心重合。边长为a的n边正多边形外接圆的半径为:面积为:正n 边形的面积 S n {displaystyle S_{n}} 与其外接圆的面积 A n {displaystyle A_{n}} 之比为故此,当n趋向无穷时,另外,其内切圆的面积 s n {displaystyle s_{n}} 与其外接圆的面积 A n {displaystyle A_{n}} 之比为:

相关

  • 金属金属是一种具有光泽(对可见光强烈反射)、富有延展性、容易导电、传热等性质的物质。金属的上述特质都跟金属晶体内含有自由电子有关。由于金属的电子倾向脱离,因此具有良好的导
  • 罗氏罗氏(德语:F. Hoffmann-La Roche AG,简称Roche),总部位于瑞士巴塞尔的跨国医药研发生产商。它始创于1896年,现属于罗氏控股股份有限公司。罗氏于2009年3月26日以大约468亿美元完成
  • 泌乳素1n9d, 3d48, 1rw5· STAT protein nuclear translocation · regulation of JAK-STAT cascade · female pregnancy · regulation of multicellular organism growth
  • 早期尼德兰画派早期尼德兰绘画也称佛兰芒原始绘画(荷兰语:Vlaamse Primitieven)是15及16世纪北方文艺复兴时勃艮第及哈布斯堡统治时的尼德兰地区的绘画作品,布鲁日、根特、图尔奈及布鲁塞尔是
  • 网翅总目网翅总目(Dictyoptera)为昆虫纲复新生翅亚群(polyneopterous)下的一个总目,下辖蜚蠊目(包含蟑螂及白蚁)和螳螂目等两个目。现生的网翅总目成员的产卵管(ovipostor)皆较短,但化石中的网
  • IBX2-碘酰基苯甲酸(IBX)是典型的高价碘试剂,在有机合成中用作氧化剂,用于将醇氧化为醛。以邻碘苯甲酸、溴酸钾(或过一硫酸氢钾复合盐)和硫酸为原料制取。它在空气中稳定,可以长期保存
  • 埃及神话人物列表埃及古物学者现今大多支持弗林德斯·皮特里爵士的论点:埃及宗教是多神论的。然而,他同时期的对手华利斯·巴奇,所持观点则是认为埃及宗教起初是一神论,众神皆为神祇拉的延伸,类似
  • 弓形激波弓形激波(Bow shock)是太阳风与行星的磁层顶相遇处形成的激波。一个已经被深入研究的例子是太阳风与地球磁场相遇时形成的弓形激波。地球的弓形激波距离地球大约9万公里,厚度大
  • 电椅电椅(Electric Chair)是美国于20世纪常用的一项死刑执行工具。电椅的发明者实际上由托马斯·爱迪生本人发明,名义上是阿尔弗雷德·索思威克(英语:Alfred P. Southwick)(Alfred P. S
  • 顶坡角上的家林雨宣、陈德烈、李天柱、谢琼煖、周辰达、方宥心、兵家绮、阿庞、马国贤、林永旭中华民国(台湾)《顶坡角上的家》(英文:Home Away from Home),是一部以描写林叶师姊及乐生疗养院