首页 >
外心
✍ dations ◷ 2025-06-07 19:55:54 #外心
在数学中,一个二维平面上的多边形的外接圆是一个使得该多边形的所有顶点都在其上的圆形,这时称这个多边形为圆内接多边形,外接圆的圆心被称为该多边形的外心。一个多边形至多有一个外接圆,也就是说对于一个多边形,它的外接圆,如果存在的话,是唯一的。并非所有的多边形都有外接圆。三角形和正多边形一定有外接圆。拥有外接圆的四边形被称为圆内接四边形。任何三角形都有外接圆。三角形外心的位置在三角形的三条边的垂直平分线的交点上,到三个顶点的距离都相等(等于外接圆的半径),而且:若以R表示三角形外接圆半径,那么根据正弦定理,
a
sin
A
=
b
sin
B
=
c
sin
C
=
2
R
{displaystyle {frac {a}{sin A}}={frac {b}{sin B}}={frac {c}{sin C}}=2R}
。
若以"S"表示三角形面积,由于
S
=
1
2
a
b
sin
C
{displaystyle S={frac {1}{2}}absin C}
,整理得到
R
=
a
b
c
4
S
{displaystyle R={frac {abc}{4S}}}
。过三点圆的方程为
|
x
2
+
y
2
x
y
1
x
1
2
+
y
1
2
x
1
y
1
1
x
2
2
+
y
2
2
x
2
y
2
1
x
3
2
+
y
3
2
x
3
y
3
1
|
=
0
{displaystyle {begin{vmatrix}x^{2}+y^{2}&x&y&1\x_{1}^{2}+y_{1}^{2}&x_{1}&y_{1}&1\x_{2}^{2}+y_{2}^{2}&x_{2}&y_{2}&1\x_{3}^{2}+y_{3}^{2}&x_{3}&y_{3}&1end{vmatrix}}=0}
,故三角形外心坐标为
(
|
x
1
2
+
y
1
2
y
1
1
x
2
2
+
y
2
2
y
2
1
x
3
2
+
y
3
2
y
3
1
|
2
|
x
1
y
1
1
x
2
y
2
1
x
3
y
3
1
|
,
|
x
1
x
1
2
+
y
1
2
1
x
2
x
2
2
+
y
2
2
1
x
3
x
3
2
+
y
3
2
1
|
2
|
x
1
y
1
1
x
2
y
2
1
x
3
y
3
1
|
)
{displaystyle ({frac {begin{vmatrix}x_{1}^{2}+y_{1}^{2}&y_{1}&1\x_{2}^{2}+y_{2}^{2}&y_{2}&1\x_{3}^{2}+y_{3}^{2}&y_{3}&1end{vmatrix}}{2{begin{vmatrix}x_{1}&y_{1}&1\x_{2}&y_{2}&1\x_{3}&y_{3}&1end{vmatrix}}}},{frac {begin{vmatrix}x_{1}&x_{1}^{2}+y_{1}^{2}&1\x_{2}&x_{2}^{2}+y_{2}^{2}&1\x_{3}&x_{3}^{2}+y_{3}^{2}&1end{vmatrix}}{2{begin{vmatrix}x_{1}&y_{1}&1\x_{2}&y_{2}&1\x_{3}&y_{3}&1end{vmatrix}}}})}圆内接四边形对角互补,其面积A可以用婆罗摩笈多公式求得:
A
=
(
s
−
a
)
(
s
−
b
)
(
s
−
c
)
(
s
−
d
)
{displaystyle A={sqrt {(s-a)(s-b)(s-c)(s-d)}}}
,其中a, b, c, d为四边的长度,s为半周长。其外接圆半径为:
R
=
(
a
c
+
b
d
)
(
a
d
+
b
c
)
(
a
b
+
c
d
)
4
A
{displaystyle R={frac {sqrt {(ac+bd)(ad+bc)(ab+cd)}}{4A}}}
。边长相等的四边形中,以圆内接四边形最大。所有的正多边形都有外接圆,外接圆的圆心和正多边形的中心重合。边长为a的n边正多边形外接圆的半径为:面积为:正n 边形的面积
S
n
{displaystyle S_{n}}
与其外接圆的面积
A
n
{displaystyle A_{n}}
之比为故此,当n趋向无穷时,另外,其内切圆的面积
s
n
{displaystyle s_{n}}
与其外接圆的面积
A
n
{displaystyle A_{n}}
之比为:
相关
- 风土地方性流行(Endemic)又称地方病或风土病,在流行病学中,指毋须从外界输入,便能在人口内持续出现的疾病,例如:在英国,水痘是地方性流行病,而疟疾并不是。虽然每年在英国都会出现数宗本
- 电生理学在神经科学,电生理学是一门研究生物细胞或组织的电学特性的科学,主要研究神经元的电学特性,尤其是动作电位包括细胞膜电势变化与跨膜电流的调节。它涉及在多种尺度上从单个离子
- 倒立显微镜光学显微镜(Optical microscope、Light microscope)是一种利用光学透镜产生影像放大效应的显微镜。由物体入射的光被至少两个光学系统(物镜和目镜)放大。首先物镜产生一个被放大
- 氯酸钾氯酸钾由钾、氯和氧元素组成,化学式为KClO3。它在室温时是无色晶体或白色粉末,而且是一种强氧化剂,可溶于水和甘油,不溶于醇。其折光率为1.5167。有毒,口服5~10克可致死。氯酸钾也
- 宽带用户本列表来自于根据国际电信联盟编制的数据,按互联网用户数和普及率列出各国的可分类清单。该清单包括固定宽带和蜂窝移动网络的数据:渗透率是一个用户数量占国家人口的百分比。
- 耐丝菌素6-dideoxy-β-L-mannopyranosyl)oxy]-1, 3,4,7,9,11,17,37-octahydroxy-15, 16,18-trimethyl-13-oxo-14, 39-dioxabicyclononatriaconta-19, 21,25,27,29,31-hexaene-36-ca
- 宋尔卫宋尔卫(1970年4月-),广东鹤山人,汉族,中国乳腺外科专家,中国科学院生命科学和医学学部院士,中山大学孙逸仙纪念医院院长、中山大学中山医学院院长。其同时为九三学社社员和第十三届
- 浮蚕属见内文浮蚕属(学名:Tomopteris;新拉丁语,由希腊语字根 tomo “切口”跟 pteris “翅膀”或“鱼鳍” )为海洋浮游的多毛纲生物浮蚕科的一个属。 本物种终其一生均在浮游生物界生活
- Batsch奥古斯特·巴奇(1761年10月28日-1802年9月29日)(全名奥古斯特·约翰·格奥尔格·卡尔·巴奇 德语:August Johann Georg Karl Batsch)是德国植物学家,主要研究领域为真菌。他出生于
- 成员书院br /small又译“学院”/small剑桥大学学院列表列举了剑桥大学目前所有的成员学院(Colleges,又译“书院”)。这些成员学院是剑桥大学本科生和研究生住宿的地方,他们同时也负责安排自己的本科生录取,亦会为大学