外心

✍ dations ◷ 2025-06-28 12:09:42 #外心
在数学中,一个二维平面上的多边形的外接圆是一个使得该多边形的所有顶点都在其上的圆形,这时称这个多边形为圆内接多边形,外接圆的圆心被称为该多边形的外心。一个多边形至多有一个外接圆,也就是说对于一个多边形,它的外接圆,如果存在的话,是唯一的。并非所有的多边形都有外接圆。三角形和正多边形一定有外接圆。拥有外接圆的四边形被称为圆内接四边形。任何三角形都有外接圆。三角形外心的位置在三角形的三条边的垂直平分线的交点上,到三个顶点的距离都相等(等于外接圆的半径),而且:若以R表示三角形外接圆半径,那么根据正弦定理, a sin ⁡ A = b sin ⁡ B = c sin ⁡ C = 2 R {displaystyle {frac {a}{sin A}}={frac {b}{sin B}}={frac {c}{sin C}}=2R} 。 若以"S"表示三角形面积,由于 S = 1 2 a b sin ⁡ C {displaystyle S={frac {1}{2}}absin C} ,整理得到 R = a b c 4 S {displaystyle R={frac {abc}{4S}}} 。过三点圆的方程为 | x 2 + y 2 x y 1 x 1 2 + y 1 2 x 1 y 1 1 x 2 2 + y 2 2 x 2 y 2 1 x 3 2 + y 3 2 x 3 y 3 1 | = 0 {displaystyle {begin{vmatrix}x^{2}+y^{2}&x&y&1\x_{1}^{2}+y_{1}^{2}&x_{1}&y_{1}&1\x_{2}^{2}+y_{2}^{2}&x_{2}&y_{2}&1\x_{3}^{2}+y_{3}^{2}&x_{3}&y_{3}&1end{vmatrix}}=0} ,故三角形外心坐标为 ( | x 1 2 + y 1 2 y 1 1 x 2 2 + y 2 2 y 2 1 x 3 2 + y 3 2 y 3 1 | 2 | x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 | , | x 1 x 1 2 + y 1 2 1 x 2 x 2 2 + y 2 2 1 x 3 x 3 2 + y 3 2 1 | 2 | x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 | ) {displaystyle ({frac {begin{vmatrix}x_{1}^{2}+y_{1}^{2}&y_{1}&1\x_{2}^{2}+y_{2}^{2}&y_{2}&1\x_{3}^{2}+y_{3}^{2}&y_{3}&1end{vmatrix}}{2{begin{vmatrix}x_{1}&y_{1}&1\x_{2}&y_{2}&1\x_{3}&y_{3}&1end{vmatrix}}}},{frac {begin{vmatrix}x_{1}&x_{1}^{2}+y_{1}^{2}&1\x_{2}&x_{2}^{2}+y_{2}^{2}&1\x_{3}&x_{3}^{2}+y_{3}^{2}&1end{vmatrix}}{2{begin{vmatrix}x_{1}&y_{1}&1\x_{2}&y_{2}&1\x_{3}&y_{3}&1end{vmatrix}}}})}圆内接四边形对角互补,其面积A可以用婆罗摩笈多公式求得: A = ( s − a ) ( s − b ) ( s − c ) ( s − d ) {displaystyle A={sqrt {(s-a)(s-b)(s-c)(s-d)}}} ,其中a, b, c, d为四边的长度,s为半周长。其外接圆半径为: R = ( a c + b d ) ( a d + b c ) ( a b + c d ) 4 A {displaystyle R={frac {sqrt {(ac+bd)(ad+bc)(ab+cd)}}{4A}}} 。边长相等的四边形中,以圆内接四边形最大。所有的正多边形都有外接圆,外接圆的圆心和正多边形的中心重合。边长为a的n边正多边形外接圆的半径为:面积为:正n 边形的面积 S n {displaystyle S_{n}} 与其外接圆的面积 A n {displaystyle A_{n}} 之比为故此,当n趋向无穷时,另外,其内切圆的面积 s n {displaystyle s_{n}} 与其外接圆的面积 A n {displaystyle A_{n}} 之比为:

相关

  • 法律经济学法律经济学(law and economics)或称法律的经济分析(economic analysis of law),是由美国学者在1960年代发展出的跨领域交叉学科。主要是以经济学的效率观点,分析法律的形成、架构
  • doi数字对象标识符(英语:Digital Object Identifier,简称DOI)也称数字对象识别号、数字对象识别符、数字对象标识符、数字对象唯一标识符等,是一套识别数字资源的机制,涵括的对象有影
  • 变位变位(英文: conjugation、拉丁文:conjugatio)是指动词根据人称、数、性、时态、体、式的不同而产生的词形变化。变位是语法学中属于动词的特有范畴。静词的词形变化不能称为变位
  • 弗兰克·盖里弗兰克·欧恩·盖里,CC(英语:Frank Owen Gehry,1929年2月28日-)原名“埃弗拉伊姆·歐恩·戈德堡”,美国后现代主义及解构主义建筑师,曾获得普利策克奖。生于加拿大,后来移民至美国,现
  • 格波格波(lattice wave)是原子热振动的一种描述。从整体上看,处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波,即晶格的振动模。晶格具有周期性,因此晶格的振
  • 烟酸缺乏症糙皮病又称癞皮病,是一种维生素缺乏性疾病,主要诱因是缺乏维生素B3(烟酸)和蛋白质,特别是含必需氨基酸色氨酸的蛋白质。色氨酸能被转化为烟酸,大约60mg色氨酸能被转化成1mg烟酸,过
  • 伊集院彦吉伊集院彦吉(日语:伊集院彦吉/いじゅういん ひこきち Ijūin Hikokichi;1864年7月22日-1924年4月26日),日本明治、大正时代的外交官、日本驻华公使、外务大臣、男爵。任内历经辛亥
  • 催化反应催化(catalysis)是利用催化剂改变化学反应速率的一种工艺。许多化学工业要利用催化作用来获得需要的反应速率。催化也是一种化工单元过程,催化剂本身在反应中不会被消耗,但催化
  • 探险者一号探险者一号(英语:Explorer 1)是美国于1958年1月31日在佛罗里达州卡拉维纳尔角发射的第一颗地球人造卫星,晚于前苏联于1957年10月4日发射的世界第一颗地球人造卫星史普尼克1号和
  • 掀裙掀裙(英语:Anásyrma)是一种掀起裙子或苏格兰裙的手势。这与宗教仪式、情色及下流玩笑有关。在各种艺术作品里,也有掀裙相关的描述。掀裙与露体癖相似的动作“flashing”不同,露