首页 >
外心
✍ dations ◷ 2025-10-27 11:30:45 #外心
在数学中,一个二维平面上的多边形的外接圆是一个使得该多边形的所有顶点都在其上的圆形,这时称这个多边形为圆内接多边形,外接圆的圆心被称为该多边形的外心。一个多边形至多有一个外接圆,也就是说对于一个多边形,它的外接圆,如果存在的话,是唯一的。并非所有的多边形都有外接圆。三角形和正多边形一定有外接圆。拥有外接圆的四边形被称为圆内接四边形。任何三角形都有外接圆。三角形外心的位置在三角形的三条边的垂直平分线的交点上,到三个顶点的距离都相等(等于外接圆的半径),而且:若以R表示三角形外接圆半径,那么根据正弦定理,
a
sin
A
=
b
sin
B
=
c
sin
C
=
2
R
{displaystyle {frac {a}{sin A}}={frac {b}{sin B}}={frac {c}{sin C}}=2R}
。
若以"S"表示三角形面积,由于
S
=
1
2
a
b
sin
C
{displaystyle S={frac {1}{2}}absin C}
,整理得到
R
=
a
b
c
4
S
{displaystyle R={frac {abc}{4S}}}
。过三点圆的方程为
|
x
2
+
y
2
x
y
1
x
1
2
+
y
1
2
x
1
y
1
1
x
2
2
+
y
2
2
x
2
y
2
1
x
3
2
+
y
3
2
x
3
y
3
1
|
=
0
{displaystyle {begin{vmatrix}x^{2}+y^{2}&x&y&1\x_{1}^{2}+y_{1}^{2}&x_{1}&y_{1}&1\x_{2}^{2}+y_{2}^{2}&x_{2}&y_{2}&1\x_{3}^{2}+y_{3}^{2}&x_{3}&y_{3}&1end{vmatrix}}=0}
,故三角形外心坐标为
(
|
x
1
2
+
y
1
2
y
1
1
x
2
2
+
y
2
2
y
2
1
x
3
2
+
y
3
2
y
3
1
|
2
|
x
1
y
1
1
x
2
y
2
1
x
3
y
3
1
|
,
|
x
1
x
1
2
+
y
1
2
1
x
2
x
2
2
+
y
2
2
1
x
3
x
3
2
+
y
3
2
1
|
2
|
x
1
y
1
1
x
2
y
2
1
x
3
y
3
1
|
)
{displaystyle ({frac {begin{vmatrix}x_{1}^{2}+y_{1}^{2}&y_{1}&1\x_{2}^{2}+y_{2}^{2}&y_{2}&1\x_{3}^{2}+y_{3}^{2}&y_{3}&1end{vmatrix}}{2{begin{vmatrix}x_{1}&y_{1}&1\x_{2}&y_{2}&1\x_{3}&y_{3}&1end{vmatrix}}}},{frac {begin{vmatrix}x_{1}&x_{1}^{2}+y_{1}^{2}&1\x_{2}&x_{2}^{2}+y_{2}^{2}&1\x_{3}&x_{3}^{2}+y_{3}^{2}&1end{vmatrix}}{2{begin{vmatrix}x_{1}&y_{1}&1\x_{2}&y_{2}&1\x_{3}&y_{3}&1end{vmatrix}}}})}圆内接四边形对角互补,其面积A可以用婆罗摩笈多公式求得:
A
=
(
s
−
a
)
(
s
−
b
)
(
s
−
c
)
(
s
−
d
)
{displaystyle A={sqrt {(s-a)(s-b)(s-c)(s-d)}}}
,其中a, b, c, d为四边的长度,s为半周长。其外接圆半径为:
R
=
(
a
c
+
b
d
)
(
a
d
+
b
c
)
(
a
b
+
c
d
)
4
A
{displaystyle R={frac {sqrt {(ac+bd)(ad+bc)(ab+cd)}}{4A}}}
。边长相等的四边形中,以圆内接四边形最大。所有的正多边形都有外接圆,外接圆的圆心和正多边形的中心重合。边长为a的n边正多边形外接圆的半径为:面积为:正n 边形的面积
S
n
{displaystyle S_{n}}
与其外接圆的面积
A
n
{displaystyle A_{n}}
之比为故此,当n趋向无穷时,另外,其内切圆的面积
s
n
{displaystyle s_{n}}
与其外接圆的面积
A
n
{displaystyle A_{n}}
之比为:
相关
- 肾乳头坏死肾乳头坏死(Renal papillary necrosis )是肾病变的一种形式、涉及肾乳头(renal papilla)坏死, 肾乳头这是由直小血管(vasa recta)所供应。肾乳头坏死敏锐地呈现了用肉眼血尿
- 发声态发声态(英语:phonation)指发声时声门活动的状态。最常见的两种发声态,是清声(喉开态)和浊声(常态浊声),其差异在于声带是否振动,清声不振动,而浊声振动。带清声的音,叫清音;带浊声的音,叫
- 外消旋体外消旋混合物(英语:racemic mixture、racemate,或称为 外消旋体)是等物质的量的一对对映体混合后得到的组成物。第一个制得的外消旋体是路易·巴斯德制得的酒石酸的外消旋混合物
- 血胆红素过高胆红素(英文:Bilirubin)是胆色素的一种,是人类胆汁的主要色素,呈橙黄色。它是体内血红素的主要代谢产物,有毒性,可对大脑和神经系统引起不可逆的损害,但也有抗氧化剂功能,可以抑制亚
- 朱塞佩·威尔第朱塞佩·福图尼诺·弗朗切斯科·威尔第(意大利语:Giuseppe Fortunino Francesco Verdi,1813年10月10日-1901年1月27日),意大利作曲家,出生于帕尔马附近的勒朗科勒(Le Roncole),逝世于
- 斯维尔德洛夫斯克叶卡捷琳堡(俄语:Екатеринбу́рг),亦称凯瑟琳堡,曾称斯维尔德洛夫斯克(Свердло́вск),位于乌拉尔山脉东麓,伊塞特河由西北向东南穿城而过。叶卡捷琳堡是俄罗斯
- 属地主义属地主义(拉丁语:Jus soli,即土地衍生的权利),又称出生地主义,即无论父母是哪国人,只要出生在该国的领土内,即自动获得该国国籍。亚欧非及大洋洲的绝大多数国家对出生人口都奉以基于
- 孔子纪年孔子纪元,又称孔子纪年,一种纪年法,以孔丘作为纪年依据的纪元,通常以孔子诞生之年为元年。这种纪年法在清朝末年在中国出现,仿效西元以耶稣诞生为纪年之始的做法,以孔子出生作为纪
- 1167年重要事件及趋势重要人物
- 威尼斯红威尼斯红(Venetian red)是属于红色的一种,为有点不饱和的暖色颜料。主要来自近纯氧化铁(Fe2O3)的赤铁矿。现今已经可以用氧化铁合成出威尼斯红。1753年,英国出现世界上第一个使用
