首页 >
外心
✍ dations ◷ 2025-11-10 12:12:10 #外心
在数学中,一个二维平面上的多边形的外接圆是一个使得该多边形的所有顶点都在其上的圆形,这时称这个多边形为圆内接多边形,外接圆的圆心被称为该多边形的外心。一个多边形至多有一个外接圆,也就是说对于一个多边形,它的外接圆,如果存在的话,是唯一的。并非所有的多边形都有外接圆。三角形和正多边形一定有外接圆。拥有外接圆的四边形被称为圆内接四边形。任何三角形都有外接圆。三角形外心的位置在三角形的三条边的垂直平分线的交点上,到三个顶点的距离都相等(等于外接圆的半径),而且:若以R表示三角形外接圆半径,那么根据正弦定理,
a
sin
A
=
b
sin
B
=
c
sin
C
=
2
R
{displaystyle {frac {a}{sin A}}={frac {b}{sin B}}={frac {c}{sin C}}=2R}
。
若以"S"表示三角形面积,由于
S
=
1
2
a
b
sin
C
{displaystyle S={frac {1}{2}}absin C}
,整理得到
R
=
a
b
c
4
S
{displaystyle R={frac {abc}{4S}}}
。过三点圆的方程为
|
x
2
+
y
2
x
y
1
x
1
2
+
y
1
2
x
1
y
1
1
x
2
2
+
y
2
2
x
2
y
2
1
x
3
2
+
y
3
2
x
3
y
3
1
|
=
0
{displaystyle {begin{vmatrix}x^{2}+y^{2}&x&y&1\x_{1}^{2}+y_{1}^{2}&x_{1}&y_{1}&1\x_{2}^{2}+y_{2}^{2}&x_{2}&y_{2}&1\x_{3}^{2}+y_{3}^{2}&x_{3}&y_{3}&1end{vmatrix}}=0}
,故三角形外心坐标为
(
|
x
1
2
+
y
1
2
y
1
1
x
2
2
+
y
2
2
y
2
1
x
3
2
+
y
3
2
y
3
1
|
2
|
x
1
y
1
1
x
2
y
2
1
x
3
y
3
1
|
,
|
x
1
x
1
2
+
y
1
2
1
x
2
x
2
2
+
y
2
2
1
x
3
x
3
2
+
y
3
2
1
|
2
|
x
1
y
1
1
x
2
y
2
1
x
3
y
3
1
|
)
{displaystyle ({frac {begin{vmatrix}x_{1}^{2}+y_{1}^{2}&y_{1}&1\x_{2}^{2}+y_{2}^{2}&y_{2}&1\x_{3}^{2}+y_{3}^{2}&y_{3}&1end{vmatrix}}{2{begin{vmatrix}x_{1}&y_{1}&1\x_{2}&y_{2}&1\x_{3}&y_{3}&1end{vmatrix}}}},{frac {begin{vmatrix}x_{1}&x_{1}^{2}+y_{1}^{2}&1\x_{2}&x_{2}^{2}+y_{2}^{2}&1\x_{3}&x_{3}^{2}+y_{3}^{2}&1end{vmatrix}}{2{begin{vmatrix}x_{1}&y_{1}&1\x_{2}&y_{2}&1\x_{3}&y_{3}&1end{vmatrix}}}})}圆内接四边形对角互补,其面积A可以用婆罗摩笈多公式求得:
A
=
(
s
−
a
)
(
s
−
b
)
(
s
−
c
)
(
s
−
d
)
{displaystyle A={sqrt {(s-a)(s-b)(s-c)(s-d)}}}
,其中a, b, c, d为四边的长度,s为半周长。其外接圆半径为:
R
=
(
a
c
+
b
d
)
(
a
d
+
b
c
)
(
a
b
+
c
d
)
4
A
{displaystyle R={frac {sqrt {(ac+bd)(ad+bc)(ab+cd)}}{4A}}}
。边长相等的四边形中,以圆内接四边形最大。所有的正多边形都有外接圆,外接圆的圆心和正多边形的中心重合。边长为a的n边正多边形外接圆的半径为:面积为:正n 边形的面积
S
n
{displaystyle S_{n}}
与其外接圆的面积
A
n
{displaystyle A_{n}}
之比为故此,当n趋向无穷时,另外,其内切圆的面积
s
n
{displaystyle s_{n}}
与其外接圆的面积
A
n
{displaystyle A_{n}}
之比为:
相关
- 打嗝打嗝在医学上称为呃逆,是由于横膈膜出现阵发性和痉挛性收缩而引起。如果受到寒冷刺激、饱餐、大笑、吃饭过快和吃了干/硬的食物后,都可能出现暂时性的呃逆。“打嗝”一词常被
- 子宫内膜异位症子宫内膜异位症(Endometriosis)属于妇科疾病,指的是本当存在于子宫内的内膜组织却在子宫外的其他地方生长,多数会在卵巢、输卵管以及子宫附近的组织,少数的情况也可能发生在身体
- 妮娜大陆妮娜大陆(Nena)是一个远古的较小规模超大陆,由北极大陆、波罗地大陆和东南极克拉通的多个克拉通组成。妮娜大陆大约在18亿年前组成,后来成为全球性超大陆哥伦比亚大陆的一部分。
- 陶瓷工程陶瓷工程是使用无机非金属材料制造物体的科学技术。陶瓷工程的研究范围包括包括对原材料的提纯、对需要的化学成分的研究和生产以及对产物的结构、成分和性质的研究。陶瓷材
- 待乙妥待乙妥(diethyltoluamide,缩写为DEET),又称敌避、敌避胺、避蚊胺,是一种淡黄色的液油状物体,是常见的防蚊液成分,使用时喷洒于皮肤或衣物,主要用于驱除蚊子。DEET更可防止蜱类叮咬,防
- 皖南皖南是指中国安徽省南部地区,通常包括马鞍山市(除含山县、和县)、芜湖市(除无为县)、铜陵市、宣城市、黄山市、池州市等地区,即安徽省长江以南的地区。皖南地区的地形以山地为主
- 衙役衙门差役(简称衙差、衙役),古代中国吏役名。衙门内实际主管侦缉逮捕、处理管辖地区行政及司法事务的职位或人员。衙门差役于位阶上,与衙门胥吏相同的,都属于没有官品的行政人员,甚
- 蚁蛉蚁蛉是脉翅目蚁蛉科昆虫的成员。蚁狮是称呼此科的幼虫,而成虫被称之为蚁蛉。蚁狮会经历完全变态过程。幼虫会在沙地上制造出漏斗状的陷阱(蚁之地狱),好让蚂蚁或木虱之类的动物掉
- 郑梦周四配颜回 · 孟子 · 曾参 · 孔伋日本藤原惺窝 · 林罗山 · 室鸠巢新井白石 · 雨森芳洲朝鲜薛聪 · 权近 · 吉再 · 安珦 · 李穑李滉 · 王仁 · 李齐贤
- 大将/一级上将大将,也称一级上将,是部分国家设有的军衔,一般位于元帅和二级上将之间。通常以四颗星为代表。大将是中国人民解放军1955年军衔制的一级军衔,位于元帅之下,上将之上,1965年随着解放
