一元谓词演算

✍ dations ◷ 2025-12-11 03:14:37 #一元谓词演算
在逻辑中,一元谓词演算是所有谓词字母都是一元(就是只接受一个参数)并且没有函数字母的谓词演算。所有原子公式都有形式 P ( x ) {displaystyle P(x)} ,这里的 P {displaystyle P} 是谓词字母而 x {displaystyle x} 是变量。向一元逻辑增加一个单一二元谓词字母将导致一个有完全谓词演算表达能力的系统。所以缺乏多元谓词严格的限定了在一元谓词演算中都能表达什么。不像完全谓词演算,这个演算是如此的弱,这个演算的一个给定公式是否有效(对于非空论域为真)是可判定性的。 因为一元谓词演算是可判定性的,它不胜任一般的数学推理,比如叫做皮亚诺算术的微型数学片段就已知是不可判定性的。尽管有上述缺陷,超越一元逻辑的需求没有得到赞赏,直到奥古斯都·德·摩根和查尔斯·皮尔士在十九世纪关于关系逻辑的著作和弗雷格1879年的《概念文字》的出版。在他们三人之前,三段论词项逻辑被广泛认为足够用于形式演绎推理。在词项逻辑中的推理都可以在一元谓词演算中表示。例如三段论可以在一元谓词演算中符号表示为这里的 D {displaystyle D} , M {displaystyle M} 和 H {displaystyle H} 分别指示存在事物的谓词,这里是狗(dog)、哺乳动物(mammal)和草食动物(herbivore)。反过来,一元谓词演算引人注意的不比词项逻辑更有表达力。可以容易的证明在一元谓词逻辑中的所有公式都等价于量词只出现在如下形式的闭合子公式中的公式或每个这种公式都是另一个的否定,并且量词不嵌套。这些公式还稍微推广了在词项逻辑中考虑的基本判断的形式。例如,这个形式语言陈述比如“所有哺乳动物要么是草食动物要么是肉食动物(carnivore)要么二者都是”为 ∀ x ¬ M ( x ) ∨ H ( x ) ∨ C ( x ) {displaystyle forall x,neg M(x)lor H(x)lor C(x)} 。

相关

  • 风湿病学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学风湿病学或称风湿病专科(英语:Rheumatol
  • 恶性高热恶性高热、致命高热(英语:Malignant hyperthermia (MH))是病人因全身麻醉而导致的严重反应,是因为使用特定全身麻醉药而引发的罕见危及生命病症(英语:life-threatening condition),
  • 盐酸阿比朵尔阿比朵尔 (俄语:Арбидол,英语:Arbidol) 是一种抗病毒药物,由前苏联药物化学研究中心研制开发,主要适应症是A类、B类流感病毒引起的流行性感冒,同时对其他一些呼吸道病毒感
  • 猫抓病猫抓病是一种由巴通体科的韩瑟勒巴通氏菌(学名:Bartonella henselae)引起的亚急性细菌性疾病,至1950年代则发现此病多经猫抓伤或咬伤而造成感染,主要传播媒介是家猫,主要病发在小
  • 打火机打火机,是一种工具,它可以生出火焰,有燃烧式的和电流式的两种。在大部分地区,它取代了过去的钻木取火、打火石、火折子、火柴等取火方式,成为现代社会的取火象征。燃烧式的打火机
  • 抗逆转录病毒药物抗逆转录病毒药(management of HIV/AIDS)是一类于治疗逆转录病毒(例如HIV、冠状病毒等)感染的药物。联合使用几种(通常是三种或四种)抗逆转录病毒药物被称为高效抗逆转录病毒治
  • 南美洲经济南美洲经济指居住在南美洲12个国家的超过4.10亿人口所组成的经济体。截至2007年初,委内瑞拉、哥伦比亚、阿根廷、乌拉圭、智利和秘鲁每年的经济增长都超过了8%,南美洲正在经历
  • 医师誓词希波克拉底誓词(希腊语:Όρκος του Ιπποκράτη,英语:Hippocratic Oath),俗称医师誓词,是西方医生传统上行医前的誓言,希波克拉底乃古希腊医者,被誉为西方“医学之父”
  • 维京人维京人(古诺斯语:víkingr)是诺尔斯人的一支(斯堪的纳维亚人),他们是从公元8世纪到11世纪侵扰并殖民欧洲沿海和不列颠群岛的探险家,武士,商人和海盗。其足迹遍及从欧洲大陆至北极广
  • 两栖类两栖动物(学名:Amphibia)是两栖纲生物的通称,又名两生动物,包括所有生没有卵壳的卵,拥有四肢的脊椎动物(蚓螈的四肢已退化)。两栖动物的皮肤裸露,表面没有鳞片、毛发等覆盖,但是可以分