首页 >
一元谓词演算
✍ dations ◷ 2025-11-14 19:10:33 #一元谓词演算
在逻辑中,一元谓词演算是所有谓词字母都是一元(就是只接受一个参数)并且没有函数字母的谓词演算。所有原子公式都有形式
P
(
x
)
{displaystyle P(x)}
,这里的
P
{displaystyle P}
是谓词字母而
x
{displaystyle x}
是变量。向一元逻辑增加一个单一二元谓词字母将导致一个有完全谓词演算表达能力的系统。所以缺乏多元谓词严格的限定了在一元谓词演算中都能表达什么。不像完全谓词演算,这个演算是如此的弱,这个演算的一个给定公式是否有效(对于非空论域为真)是可判定性的。 因为一元谓词演算是可判定性的,它不胜任一般的数学推理,比如叫做皮亚诺算术的微型数学片段就已知是不可判定性的。尽管有上述缺陷,超越一元逻辑的需求没有得到赞赏,直到奥古斯都·德·摩根和查尔斯·皮尔士在十九世纪关于关系逻辑的著作和弗雷格1879年的《概念文字》的出版。在他们三人之前,三段论词项逻辑被广泛认为足够用于形式演绎推理。在词项逻辑中的推理都可以在一元谓词演算中表示。例如三段论可以在一元谓词演算中符号表示为这里的
D
{displaystyle D}
,
M
{displaystyle M}
和
H
{displaystyle H}
分别指示存在事物的谓词,这里是狗(dog)、哺乳动物(mammal)和草食动物(herbivore)。反过来,一元谓词演算引人注意的不比词项逻辑更有表达力。可以容易的证明在一元谓词逻辑中的所有公式都等价于量词只出现在如下形式的闭合子公式中的公式或每个这种公式都是另一个的否定,并且量词不嵌套。这些公式还稍微推广了在词项逻辑中考虑的基本判断的形式。例如,这个形式语言陈述比如“所有哺乳动物要么是草食动物要么是肉食动物(carnivore)要么二者都是”为
∀
x
¬
M
(
x
)
∨
H
(
x
)
∨
C
(
x
)
{displaystyle forall x,neg M(x)lor H(x)lor C(x)}
。
相关
- 生物物理学生物物理学(英语:Biophysics)是生物学和物理学的交叉学科,研究生物的物理特性。生物物理涵盖各级生物组织,从分子尺度到整个生物体和生态系统。它的研究范围有时会与生理学、生物
- 蛋白质结构蛋白质结构是指蛋白质分子的空间结构。作为一类重要的生物大分子,蛋白质主要由碳、氢、氧、氮、硫等化学元素组成。所有蛋白质都是由20种不同的L型α氨基酸连接形成的多聚体,
- 拉布拉多高原拉布拉多半岛 (英语:Labrador Peninsula;法语:Péninsule du Labrador)是加拿大东部的半岛。在哈得孙湾和圣劳伦斯湾之间。面积140万平方公里。人口稀少,约3.4万;除白种人外,有印第
- Spironolactone螺内酯(英语:spironolactone),商品名有安体舒通、Aldactone等,是一种常用于治疗心衰、肝硬化、胃病等引发的积液的利尿药。此药也用于治疗高血压、补充后仍无改善的低血钾,以及女
- 孝义市坐标:36°05′N 111°31′E / 36.083°N 111.517°E / 36.083; 111.517孝义市是中华人民共和国山西省的一个县级市,由吕梁市代管。位于山西中部偏南,太原盆地南缘,吕梁山脉中段
- 塞杰斯塔塞杰斯塔(古希腊语:Ἕγεστα,转写:Egesta;西西里语:Siggésta)是古希腊城市之一,由伊利米人创建,位于意大利西西里岛西北部。塞杰斯塔在历史上长期和塞利农特对立。在公元前580年
- 阿那克西美尼阿那克西美尼(希腊语:Ἀναξιμήνης,约前585年-前525年),是一位活跃在公元前6世纪后半期的前苏格拉底时期的古希腊哲学家,同时他也是米利都学派的第三位学者,他被判定为阿那
- 古雅典古雅典是一个古希腊城邦。城邦时代,位于阿提卡平原,科林斯湾和爱琴海的汇流之地。核心是高地卫城,依靠阿瑞斯山,后来成为在阿提卡平原发展而成的城邦。雅典以前是一个普通的城邦
- 自我哲学自我哲学(英语:philosophy of self)是一个经验主体与所有其他的事物区别的身份条件。当代有关自我本性的探讨与人格本性、个人身份相关的讨论有所不同。“自我”一词有时被认为
- 文法语法(英语:Grammar),也称文法,在语言学中指任意自然语言中句子、短语以及词等语法单位的语法结构与语法意义的规律,本质上即音义结合体之间的结合规律。对于语法的研究称为语法学
