细分 (图论)

✍ dations ◷ 2025-11-16 16:15:02 #图论

在图论中,细分(subdivision)或分割是指在一个图的其中一条边加入新的顶点,使这条边转变成由多个顶点构成之路径的变换,又称为扩展(expansion),为图子式理论中的基本算子之一,而变换完的像称为细分图。

在图论的一般情况下,细分通常是指对边的细分,而在一些领域中会有对面或其他结构的细分(如高维度的标记),例如重心细分(英语:Barycentric subdivision),有时会称为剖分及剖分图。

细分是一种作用于边上的变换,因此其需作用于特定的边,令其计为e,并令e所连接的两个顶点计为u和v,而细分会在顶点u和v之间加入一个新的顶点w,并使原本的边uv改成路径uwv则完成一次细分变换,换句话说,即先在uv边之间加入顶点w,移除uv边后将u和v连到w。

例如现在有一条边,计作,其由顶点和组成,计为{,}:

透过细分变换,产生了新的顶点w,将分割成两条边,分别计为12,皆连到新顶点w:

而细分变换存在逆变换,称为平滑(smoothing)变换。

细分变换的结果套用平滑变换会形成原像:

这两种变换的共通点是,其原像与变换像互为同胚。

更广义的,细分变换不一定只加入一个顶点,只要在边上有加入顶点的动作,都是一种细分,更精确地说,细分变换可以定义为将图G中的某一条边e替换为具有相同端点之路径,且构成该路径的顶点皆不在原本属于图G的顶点之中,且此路径也不会跟其他现有的顶点相连。

假设有二图G和H,若图H可以透过反复对图G套用细分变换而得,则图H可以称为图G的细分图。

扩展变换是指在一张图的某个边上,加入新的度为2之顶点,而产生的图可以称为原图的扩展。

当G'是G的细分时,则G'称为G的细分图,亦可以将G'称为G的扩展,计为TG,其中T表示扩展变换。G的原有的顶点若其位于细分作用的边上时,称为TG的分支顶点(branch vertex),在细分作用的边上加入之新的顶点称为TG的细分顶点(subdivision vertex),细分后产生的边称为细分边(subdivision edge),并且细分顶点具有度为2的特性。

细分的概念应用于图论,最早出现在1930年波兰数学家卡齐米日·库拉托夫斯基提出的一类禁用准则(指满足某种条件的图就一定无法具有某个性质)中,其所提出的库拉托夫斯基定理使用了细分图的概念。

细分可以用于几个与图论相关的证明和定理,例如判断两图是否同胚以及库拉托夫斯基定理中,对于简单图是否为平面图的准则,该定理为:如果一个简单图并不包含一个是 K5 或 K3,3 之细分图的子图,则该简单图是平面图,反之亦然,上述两条件为当且仅当关系。其中, K5 代表有 5 个点的完全图,K3,3 代表两部分各 3 个点的完全二分图,特别地,若一图的子图是K5或 K3,3之细分图,则该子图又称为库拉托夫斯基子图 。

此外,细分也可以用于将一般的图转换成简单图。

细分变换在图论中有一些不同的定义,例如重心细分(英语:Barycentric subdivision)在图论中就不是将多边形分割成三角形。

在图论中,重心细分(Barycentric subdivision)是指将图的所有边进行细分的变换,为一种特殊的细分变换,其变换的像总会是二分图,且是一个无回路(英语:Loop (graph theory))图,而任何无回路图的重心细分结果皆会是简单图。

重心细分可以被重复套用,任何图只要重复套用2次重心细分后结果总是简单图。

相关

  • 杂草野草,一般指在庭园、草坪或农地等土地上并非刻意栽种的植物。这些植物并不只限于草本植物。更多时候,野草专指有侵害性的植物,特别是那些不需栽种而能够自行大量繁殖的植物。植
  • 单车失窃记《偷自行车的人》(意大利语:Ladri di biciclette)是一部意大利电影,由狄西嘉(Vittorio De Sica)所执导,也被许多人认为是电影史上最伟大的作品之一。意大利新写实主义电影的经典代
  • 蠕动斯托克斯流(英语:Stokes flow),又称为蠕动流(creeping flow),在流体力学中指黏性力远大于惯性力的流动,其名称源于爱尔兰物理学家乔治·斯托克斯。斯托克斯流的雷诺数十分小(
  • 汆(拼音:cuān;注音:ㄘㄨㄢ)是烹饪时对食材的一种处理方法,又称汆烫、川烫、焯水或飞水。较常用的一个意思是指把食材放入沸水中片刻,透过水的热力烧煮食材。可以达到去除肉类血水
  • 尺度尺度可以指:
  • 布莱顿坐标:50°50′35″N 0°07′53″W / 50.842941°N 0.1313120°W / 50.842941; -0.1313120布莱顿(英语:Brighton),英国英格兰东南部东萨塞克斯郡布莱顿-霍夫的海滨城镇,北距伦敦47
  • 宝安大道宝安大道为中国广东深圳市宝安区的一条主要道路。由深圳南山起,经过立交后到达新城检查站,往西北走一直到深圳北面接通东莞长安镇。与107国道大致平行,途经新安、西乡、固戌、
  • 鬼影Banjong Pisanthanakun, Sopon Sukdapisit, Parkpoom Wongpoom《鬼影》( 泰语:ชัตเตอร์ กดติดวิญญาณ)是2004年的泰国恐怖剧情电影,由Banjong Pisanthanakun
  • 射击运动射击运动(shooting sport)是考验个人枪械使用能力和技巧的各种竞技和休闲运动,是现代奥运会最著名的比赛项目之一,也是西方民间历史悠久的一种传统运动。在英文中“shooting”一
  • 公共事务公共事务(英语:Public affairs)是指统治阶层为了把社会控制在“秩序”范围内、推动社会发展,所进行的满足社会成员共同需要与要求的一系列社会活动。从广义上看,其可以被定义为组