细分 (图论)

✍ dations ◷ 2025-12-03 23:07:35 #图论

在图论中,细分(subdivision)或分割是指在一个图的其中一条边加入新的顶点,使这条边转变成由多个顶点构成之路径的变换,又称为扩展(expansion),为图子式理论中的基本算子之一,而变换完的像称为细分图。

在图论的一般情况下,细分通常是指对边的细分,而在一些领域中会有对面或其他结构的细分(如高维度的标记),例如重心细分(英语:Barycentric subdivision),有时会称为剖分及剖分图。

细分是一种作用于边上的变换,因此其需作用于特定的边,令其计为e,并令e所连接的两个顶点计为u和v,而细分会在顶点u和v之间加入一个新的顶点w,并使原本的边uv改成路径uwv则完成一次细分变换,换句话说,即先在uv边之间加入顶点w,移除uv边后将u和v连到w。

例如现在有一条边,计作,其由顶点和组成,计为{,}:

透过细分变换,产生了新的顶点w,将分割成两条边,分别计为12,皆连到新顶点w:

而细分变换存在逆变换,称为平滑(smoothing)变换。

细分变换的结果套用平滑变换会形成原像:

这两种变换的共通点是,其原像与变换像互为同胚。

更广义的,细分变换不一定只加入一个顶点,只要在边上有加入顶点的动作,都是一种细分,更精确地说,细分变换可以定义为将图G中的某一条边e替换为具有相同端点之路径,且构成该路径的顶点皆不在原本属于图G的顶点之中,且此路径也不会跟其他现有的顶点相连。

假设有二图G和H,若图H可以透过反复对图G套用细分变换而得,则图H可以称为图G的细分图。

扩展变换是指在一张图的某个边上,加入新的度为2之顶点,而产生的图可以称为原图的扩展。

当G'是G的细分时,则G'称为G的细分图,亦可以将G'称为G的扩展,计为TG,其中T表示扩展变换。G的原有的顶点若其位于细分作用的边上时,称为TG的分支顶点(branch vertex),在细分作用的边上加入之新的顶点称为TG的细分顶点(subdivision vertex),细分后产生的边称为细分边(subdivision edge),并且细分顶点具有度为2的特性。

细分的概念应用于图论,最早出现在1930年波兰数学家卡齐米日·库拉托夫斯基提出的一类禁用准则(指满足某种条件的图就一定无法具有某个性质)中,其所提出的库拉托夫斯基定理使用了细分图的概念。

细分可以用于几个与图论相关的证明和定理,例如判断两图是否同胚以及库拉托夫斯基定理中,对于简单图是否为平面图的准则,该定理为:如果一个简单图并不包含一个是 K5 或 K3,3 之细分图的子图,则该简单图是平面图,反之亦然,上述两条件为当且仅当关系。其中, K5 代表有 5 个点的完全图,K3,3 代表两部分各 3 个点的完全二分图,特别地,若一图的子图是K5或 K3,3之细分图,则该子图又称为库拉托夫斯基子图 。

此外,细分也可以用于将一般的图转换成简单图。

细分变换在图论中有一些不同的定义,例如重心细分(英语:Barycentric subdivision)在图论中就不是将多边形分割成三角形。

在图论中,重心细分(Barycentric subdivision)是指将图的所有边进行细分的变换,为一种特殊的细分变换,其变换的像总会是二分图,且是一个无回路(英语:Loop (graph theory))图,而任何无回路图的重心细分结果皆会是简单图。

重心细分可以被重复套用,任何图只要重复套用2次重心细分后结果总是简单图。

相关

  • 詹纳爱德华·詹纳(英文:Edward Jenner,1749年5月17日-1823年1月26日),FRS,亦译作爱德华·金纳或琴纳,是一名英国医生,生于英国告罗士打郡伯克利牧区一个牧师家庭,以研究及推广牛痘疫苗,防止
  • 序数原子序数(英语:Atomic Number)是一个原子核内质子的数量,因此也称质子数,也等于原子电中性时的核外电子数。拥有同一原子序的原子属于同一化学元素。原子序数的符号是Z。通常原子
  • 护城河,亦作城壕或城濠,是古时由人工挖凿,环绕整座城、宫城、寺院等主要建筑的河,具有防御作用,可防止敌人或动物入侵。世界各国在古代已有开凿护城河。在中国大陆北京的紫禁城、
  • 氦融合氦聚变是核聚变的一种,参与此一反应的原子核是氦。这种由氦4(α粒子)融合的反应就是所谓的是3氦过程(3α过程),因为这项反应先由两个氦核聚变成为铍 8,但是这种同位素很不稳定,半衰
  • 氧化数氧化数(英文:Oxidation number)用来表示配位化合物中,所有配体及成配位键的电子对都被去掉后,中心原子所带的电荷数。氧化数这个概念被用于无机化学命名法中。标明氧化数使用罗马
  • BiHsub3/sub铋化氢又称䏟,是由铋和氢组成,化学式为BiH3的化合物。铋化氢是所有结构和氨同为XH3的化合物中,分子量最大的一个。铋化氢不稳定,即使在摄氏零度以下,仍然会分解为铋和氢气。铋化
  • 无量纲在量纲分析中,无量纲量,或称无因次量、无维量、无维度量、无维数量、无次元量等,指的是没有量纲的量。它是个单纯的数字,量纲为1。无量纲量在数学、物理学、工程学、经济学以及
  • 观音山《观音山》(英语:Buddha Mountain)是一部2011年上映的中国文艺剧情片,由李玉执导,张艾嘉、陈柏霖及范冰冰联袂主演。表达的主题是探讨青春成长、生命归宿和爱情条件。此电影有两
  • 阿托卡阿托卡县(Atoka County, Oklahoma)是美国奥克拉荷马州南部的一个县。面积2,564平方公里。根据美国2000年人口普查,共有人口13,879。县治阿托卡。成立于1907年7月16日。县名纪念
  • 史泰登岛铁路托滕维尔车站(Tottenville)(南段总站)斯塔滕岛铁路(英语:Staten Island Railway)是位于美国纽约市斯塔滕岛唯一的一条城市轨道交通系统线路。该线路全年24小时营运,由纽约市公共运输