在图论中,细分(subdivision)或分割是指在一个图的其中一条边加入新的顶点,使这条边转变成由多个顶点构成之路径的变换,又称为扩展(expansion),为图子式理论中的基本算子之一,而变换完的像称为细分图。
在图论的一般情况下,细分通常是指对边的细分,而在一些领域中会有对面或其他结构的细分(如高维度的标记),例如重心细分(英语:Barycentric subdivision),有时会称为剖分及剖分图。
细分是一种作用于边上的变换,因此其需作用于特定的边,令其计为e,并令e所连接的两个顶点计为u和v,而细分会在顶点u和v之间加入一个新的顶点w,并使原本的边uv改成路径uwv则完成一次细分变换,换句话说,即先在uv边之间加入顶点w,移除uv边后将u和v连到w。
例如现在有一条边,计作,其由顶点和组成,计为{,}:
透过细分变换,产生了新的顶点w,将分割成两条边,分别计为1和2,皆连到新顶点w:
而细分变换存在逆变换,称为平滑(smoothing)变换。
细分变换的结果套用平滑变换会形成原像:
这两种变换的共通点是,其原像与变换像互为同胚。
更广义的,细分变换不一定只加入一个顶点,只要在边上有加入顶点的动作,都是一种细分,更精确地说,细分变换可以定义为将图G中的某一条边e替换为具有相同端点之路径,且构成该路径的顶点皆不在原本属于图G的顶点之中,且此路径也不会跟其他现有的顶点相连。
假设有二图G和H,若图H可以透过反复对图G套用细分变换而得,则图H可以称为图G的细分图。
扩展变换是指在一张图的某个边上,加入新的度为2之顶点,而产生的图可以称为原图的扩展。
当G'是G的细分时,则G'称为G的细分图,亦可以将G'称为G的扩展,计为TG,其中T表示扩展变换。G的原有的顶点若其位于细分作用的边上时,称为TG的分支顶点(branch vertex),在细分作用的边上加入之新的顶点称为TG的细分顶点(subdivision vertex),细分后产生的边称为细分边(subdivision edge),并且细分顶点具有度为2的特性。
细分的概念应用于图论,最早出现在1930年波兰数学家卡齐米日·库拉托夫斯基提出的一类禁用准则(指满足某种条件的图就一定无法具有某个性质)中,其所提出的库拉托夫斯基定理使用了细分图的概念。
细分可以用于几个与图论相关的证明和定理,例如判断两图是否同胚以及库拉托夫斯基定理中,对于简单图是否为平面图的准则,该定理为:如果一个简单图并不包含一个是 K5 或 K3,3 之细分图的子图,则该简单图是平面图,反之亦然,上述两条件为当且仅当关系。其中, K5 代表有 5 个点的完全图,K3,3 代表两部分各 3 个点的完全二分图,特别地,若一图的子图是K5或 K3,3之细分图,则该子图又称为库拉托夫斯基子图 。
此外,细分也可以用于将一般的图转换成简单图。
细分变换在图论中有一些不同的定义,例如重心细分(英语:Barycentric subdivision)在图论中就不是将多边形分割成三角形。
在图论中,重心细分(Barycentric subdivision)是指将图的所有边进行细分的变换,为一种特殊的细分变换,其变换的像总会是二分图,且是一个无回路(英语:Loop (graph theory))图,而任何无回路图的重心细分结果皆会是简单图。
重心细分可以被重复套用,任何图只要重复套用2次重心细分后结果总是简单图。