旋转

✍ dations ◷ 2025-11-24 01:02:41 #旋转
旋转在几何和线性代数中是描述刚体围绕一个固定点的运动的在平面或空间中的变换。旋转不同于没有固定点的平移,和翻转变换的形体的反射。旋转和上面提及的变换是等距的,它们保留在任何两点之间的距离在变换之后不变。在讨论旋转的时候理解参照系是重要的。一种观点来看,你可以保持坐标轴固定旋转向量。而从另一观点出发,你可以保持向量固定旋转坐标系。在第一种观点看来,坐标或向量关于原点的逆时针旋转;或者从第二种观点看来,平面或轴关于原点的顺时针旋转。这里的 ( x , y ) {displaystyle (x,y)} 被旋转了 θ {displaystyle theta } 并希望知道旋转后的坐标 ( x ′ , y ′ ) {displaystyle (x',y')} :或平面或轴关于原点的逆时针旋转,在新平面中的坐标将顺时针旋转到旧坐标。在这种情况下,如果在旧平面中的坐标是 ( x , y ) {displaystyle (x,y)} ,同一个向量在新平面中的坐标是 ( x ′ , y ′ ) {displaystyle (x',y')} ,则:或向量(x, y)的大小同于向量 (x′, y′)的大小。复数可以看作是在复平面中的二维向量,它的尾部在原点而头部由这个复数给出。设是这样一个复数。它的实部是横坐标而虚部是纵坐标。则z可逆时针旋转角度θ,通过乘以 e i θ {displaystyle e^{itheta }} (参见欧拉公式, §2)。这可以被看作对应于在§ 1中描述的旋转。因为复数的乘法是交换性的,不同于在更高维中的情况,二维旋转是可交换的。在普通三维空间中,坐标旋转可以用欧拉角来定义,或关于要绕其旋转的向量和一个单一的旋转角度构成的轴角定义。关于原点的旋转最容易使用叫做旋转矩阵的3×3 矩阵变换来计算。关于其他点的旋转可以使用表现齐次坐标的4×4矩阵来描述。表现在三维空间中的旋转的一种可供选择的方式是四元数。四元数提供了表示在三维中旋转和方向的另一种方式。它们应用与计算机图形学、控制理论、信号处理和轨道力学中。例如,在太空船的姿态控制系统中常用四元数来下达指令,还用于测距它们的当前姿态。基本原理是组合很多四元数变换比组合很多矩阵变换在数值上更加稳定。描述旋转的所有矩阵的集合M(v,θ)加上矩阵乘法运算叫做旋转群:SO(3)。

相关

  • 语素语素(Morpheme)又称形态素、义基,在语素构词学里指最小的语法单位,是最小的语音语义结合体。在口语中,语素是由音位这一种能区别的最小声音单位所组成的,而在文字形式语言中,语素则
  • 绿菌门绿菌门是一类进行不产氧光合作用的细菌。这类细菌没有已知的近亲,最近的类群为拟杆菌门。绿菌门通常不活动(一个种具有鞭毛),形状为球状、杆状或者螺旋状。其生存要求无氧环境和
  • 坏血病坏血病(拉丁语:Scorbutus,英语:Scurvy)又称为坏血症、水手病,是一种因缺乏维生素C所引起的疾病。维生素C主要参与人体内胶原的合成,其化学名称是抗坏血酸,源自坏血症的拉丁名scorbut
  • 基督教堂教堂是进行宗教仪式的场所,一般特指基督宗教,包括天主教、东正教、新教等;天主教的教堂又可称为“天主堂”;伊斯兰教进行宗教仪式的场所一般称为清真寺,犹太教从事宗教仪式和其它
  • 脂类组学脂类组学(英语:Lipidomics)是生物系统中细胞脂类途径和网络的大规模研究。“脂类组(英语:Lipidome)(Lipidome)”一词用于描述细胞,组织,生物或生态系统中的完整脂类谱, 是“代谢物组(Met
  • 碳酸钙碳酸钙,俗称灰石、石灰石、石粉,是一种化合物,化学式为CaCO3,呈碱性,几乎不溶于水(Ksp = 4.8×10-9),可与酸反应。碳酸钙在地球上存量丰富,并以许多形式存在于岩石、矿物与生物体,如:
  • 日心说日心说,也称为地动说,是关于天体运动的和地心说相对立的学说,它认为太阳是宇宙的中心,而不是地球。哥白尼提出的日心说,推翻了长期以来居于统治地位的地心说,实现了天文学的根本变
  • 间苯二甲酸间苯二甲酸是苯二甲酸异构体中的一个,也称m-苯二甲酸,化学式为m-C6H4(COOH)2,苯环上取代的两个羧基处于间位。间苯二甲酸可通过用铬酸氧化间二甲苯,或者甲酸钾与间羧基苯磺酸钾
  • 零次文献零次文献是一种特殊形式的信息源,主要包括两个方面的内容:零次文献一般是通过口头交谈、参观展览、参加报告会等途径获取,不仅在内容上有一定的价值,而且能弥补一般公开文献从信
  • 硫循环硫循环(英语:Sulfur cycle)是一些过程的集合,其中包括硫在矿物质(包括水体)和生命系统之间移动进出过程。这样的生物地质化学循环对于地质学是重要的,因为它们会影响多种矿物质。生