首页 >
旋转
✍ dations ◷ 2025-12-08 11:51:59 #旋转
旋转在几何和线性代数中是描述刚体围绕一个固定点的运动的在平面或空间中的变换。旋转不同于没有固定点的平移,和翻转变换的形体的反射。旋转和上面提及的变换是等距的,它们保留在任何两点之间的距离在变换之后不变。在讨论旋转的时候理解参照系是重要的。一种观点来看,你可以保持坐标轴固定旋转向量。而从另一观点出发,你可以保持向量固定旋转坐标系。在第一种观点看来,坐标或向量关于原点的逆时针旋转;或者从第二种观点看来,平面或轴关于原点的顺时针旋转。这里的
(
x
,
y
)
{displaystyle (x,y)}
被旋转了
θ
{displaystyle theta }
并希望知道旋转后的坐标
(
x
′
,
y
′
)
{displaystyle (x',y')}
:或平面或轴关于原点的逆时针旋转,在新平面中的坐标将顺时针旋转到旧坐标。在这种情况下,如果在旧平面中的坐标是
(
x
,
y
)
{displaystyle (x,y)}
,同一个向量在新平面中的坐标是
(
x
′
,
y
′
)
{displaystyle (x',y')}
,则:或向量(x, y)的大小同于向量 (x′, y′)的大小。复数可以看作是在复平面中的二维向量,它的尾部在原点而头部由这个复数给出。设是这样一个复数。它的实部是横坐标而虚部是纵坐标。则z可逆时针旋转角度θ,通过乘以
e
i
θ
{displaystyle e^{itheta }}
(参见欧拉公式, §2)。这可以被看作对应于在§ 1中描述的旋转。因为复数的乘法是交换性的,不同于在更高维中的情况,二维旋转是可交换的。在普通三维空间中,坐标旋转可以用欧拉角来定义,或关于要绕其旋转的向量和一个单一的旋转角度构成的轴角定义。关于原点的旋转最容易使用叫做旋转矩阵的3×3 矩阵变换来计算。关于其他点的旋转可以使用表现齐次坐标的4×4矩阵来描述。表现在三维空间中的旋转的一种可供选择的方式是四元数。四元数提供了表示在三维中旋转和方向的另一种方式。它们应用与计算机图形学、控制理论、信号处理和轨道力学中。例如,在太空船的姿态控制系统中常用四元数来下达指令,还用于测距它们的当前姿态。基本原理是组合很多四元数变换比组合很多矩阵变换在数值上更加稳定。描述旋转的所有矩阵的集合M(v,θ)加上矩阵乘法运算叫做旋转群:SO(3)。
相关
- 链霉素链霉素是一种抗生素,为第一个氨基糖苷类抗生素,也是第一个应用于治疗肺结核的抗生素。是从革兰氏阳性的放线菌灰色链霉菌培养液中分离出来的抗菌素。其硫酸盐为白色或微黄色粉
- 胃壁细胞胃壁细胞((gastric) parietal cells)又称壁细胞、泌酸细胞,为分泌盐酸及内在因子之上皮细胞。这些细胞都位于胃之胃底(gastric fundus)衬里中之胃腺体(gastric glands)里。它们含
- 高级心脏血管救命术高级生命支持,亦为高级心肺复苏、ACLS,是指一系列的临床介入(clinical intervention),作为以下情况的应急处置:心跳停止、休克,以及其他医学上危及生命的紧急情况;亦指施行此临床
- 微下击暴流微下击爆流(英语:Microburst),又称微爆流、微爆气流、微下冲气流,是一种局部性的下沉气流,气流到达地面后会产生一股与龙卷风破坏力相约的直线风(straight-line winds)向四方八面扩
- 预防接种中华人民共和国预防接种,亦称中华人民共和国计划免疫或中华人民共和国国家免疫规划是中华人民共和国国务院卫生行政部门和其下属的各省、自治区、直辖市政府的卫生行政部门根
- 卡西奥多罗斯卡西奥多罗斯(英语:Cassiodorus,约485年-约585年),中世纪初期罗马城的政治家与作家,出身于贵族家庭,早年即博学多才,后参加政务。不久转攻基督教事务,曾因为被东罗马帝国的军队所俘获
- 股疝股疝是一种腹外疝,是指腹腔内的器官或组织连同腹膜壁层形成的疝囊通过股环经股管向卵圆窝突出。其发病率约占腹外疝的3~5%,多见于中老年妇女。根据传统定义,股疝不属于腹股沟疝,
- 纽伦堡守则《纽伦堡守则》(英语:Nuremberg Code)是一套人体试验之准则,是成于第二次世界大战之后的纽伦堡审判的结果。具体地说,其准则是顶着由于纳粹于战时对人类进行不人道的实验而来,如约
- 混响混響(英语:reverberation)是声源发音停止后声音继续存在的声学现象。其产生原因在于声波的传播需要被墙壁或周围障碍物所阻碍并反射,其消失也就滞后于发声。根据不同场合的音效
- 威尼托威尼托(意大利语:Veneto)是意大利东北部的一个政区,其边界与伦巴第、特伦蒂诺-上阿迪杰、奥地利、弗留利-威尼斯朱利亚和艾米利亚-罗马涅接壤,在阿尔卑斯山和亚得里亚海之间。贯
