首页 >
旋转
✍ dations ◷ 2025-11-21 00:13:31 #旋转
旋转在几何和线性代数中是描述刚体围绕一个固定点的运动的在平面或空间中的变换。旋转不同于没有固定点的平移,和翻转变换的形体的反射。旋转和上面提及的变换是等距的,它们保留在任何两点之间的距离在变换之后不变。在讨论旋转的时候理解参照系是重要的。一种观点来看,你可以保持坐标轴固定旋转向量。而从另一观点出发,你可以保持向量固定旋转坐标系。在第一种观点看来,坐标或向量关于原点的逆时针旋转;或者从第二种观点看来,平面或轴关于原点的顺时针旋转。这里的
(
x
,
y
)
{displaystyle (x,y)}
被旋转了
θ
{displaystyle theta }
并希望知道旋转后的坐标
(
x
′
,
y
′
)
{displaystyle (x',y')}
:或平面或轴关于原点的逆时针旋转,在新平面中的坐标将顺时针旋转到旧坐标。在这种情况下,如果在旧平面中的坐标是
(
x
,
y
)
{displaystyle (x,y)}
,同一个向量在新平面中的坐标是
(
x
′
,
y
′
)
{displaystyle (x',y')}
,则:或向量(x, y)的大小同于向量 (x′, y′)的大小。复数可以看作是在复平面中的二维向量,它的尾部在原点而头部由这个复数给出。设是这样一个复数。它的实部是横坐标而虚部是纵坐标。则z可逆时针旋转角度θ,通过乘以
e
i
θ
{displaystyle e^{itheta }}
(参见欧拉公式, §2)。这可以被看作对应于在§ 1中描述的旋转。因为复数的乘法是交换性的,不同于在更高维中的情况,二维旋转是可交换的。在普通三维空间中,坐标旋转可以用欧拉角来定义,或关于要绕其旋转的向量和一个单一的旋转角度构成的轴角定义。关于原点的旋转最容易使用叫做旋转矩阵的3×3 矩阵变换来计算。关于其他点的旋转可以使用表现齐次坐标的4×4矩阵来描述。表现在三维空间中的旋转的一种可供选择的方式是四元数。四元数提供了表示在三维中旋转和方向的另一种方式。它们应用与计算机图形学、控制理论、信号处理和轨道力学中。例如,在太空船的姿态控制系统中常用四元数来下达指令,还用于测距它们的当前姿态。基本原理是组合很多四元数变换比组合很多矩阵变换在数值上更加稳定。描述旋转的所有矩阵的集合M(v,θ)加上矩阵乘法运算叫做旋转群:SO(3)。
相关
- 膨松剂膨松剂(英语:Leavening agent),俗称为臭粉,是加入生面团或面糊中,使最终产品蓬松软化的物质。其方法即是将气体充入面团中,当然,理论上也可以通过机械手段实现,但实际上更多的是通过
- 咽喉癌头颈癌(Head and Neck Cancers)是指位于头颈部位,除了脑癌以外的其他恶性肿瘤。较常见有口腔癌、鼻咽癌,另外还有口咽癌、下咽癌、喉癌、鼻窦癌、唾液腺癌以及甲状腺癌等。头颈
- VisItVisIt是一个开源型交互式并行可视化与图形分析工具,用于查看科学数据。利用VisIt,可以可视化二维几何模型以及三维空间结构化和非结构化网格之中所定义的标量场和矢量场。在设
- 汤飞凡汤飞凡(1897年7月23日-1958年9月30日),幼名瑞昭,湖南醴陵人,微生物学家,砂眼衣原体首次分离者。为第一个投身病毒学研究的华人。曾任中华医学会理事、中国国家菌种保藏委员会主任委
- 海地面积以下资讯是以2019估计国家领袖国内生产总值(购买力平价) 以下资讯是以2016年估计国内生产总值(国际汇率) 以下资讯是以2016年估计人类发展指数 以下资讯是以2018年估计海地
- 阿尔戈斯阿尔戈斯(希腊语:Άργος,英语:Argos),或译阿戈斯、阿哥斯、阿果斯,是希腊的一座城市,位于伯罗奔尼撒半岛的东北。阿尔戈斯有约5000年的历史,在它的历史上,古希腊人、罗马人、法兰
- 稀释稀释(英语:dilution)指对现有溶液加入更多溶剂而使其浓度减小的过程。在稀释后溶液的浓度减小,但溶质的总量不变。例如将一莫耳(约58.5克)的食盐(溶质)溶在一升的水(溶剂)中,溶液的体积
- 反应激活能活化能(Activation energy)是一个化学名词,又被称为阈能。这一名词是由阿瑞尼士在1889年引入,用来定义一个化学反应的发生所需要克服的能量障碍。活化能可以用于表示一个化学反
- 毛巾毛巾,是日用品,一种布质纺织品,长毛,常见用途是洗手之后抹手脚、洗头之后抹头、沐浴之后抹身体,晚餐之后抹嘴等。通过直接接触来吸湿。
- 钢铁铁素体(α-Fe) 针状铁素体(acicular α-Fe) 奥氏体(γ-Fe) 马氏体 珠光体(88%铁素体,12%碳化三铁) 贝氏体 粒滴斑铁(珠光体及渗碳体的共晶 混合物,含碳量4.3%) 碳化三铁(Fe3C) β铁
