首页 >
旋转
✍ dations ◷ 2024-11-05 20:37:34 #旋转
旋转在几何和线性代数中是描述刚体围绕一个固定点的运动的在平面或空间中的变换。旋转不同于没有固定点的平移,和翻转变换的形体的反射。旋转和上面提及的变换是等距的,它们保留在任何两点之间的距离在变换之后不变。在讨论旋转的时候理解参照系是重要的。一种观点来看,你可以保持坐标轴固定旋转向量。而从另一观点出发,你可以保持向量固定旋转坐标系。在第一种观点看来,坐标或向量关于原点的逆时针旋转;或者从第二种观点看来,平面或轴关于原点的顺时针旋转。这里的
(
x
,
y
)
{displaystyle (x,y)}
被旋转了
θ
{displaystyle theta }
并希望知道旋转后的坐标
(
x
′
,
y
′
)
{displaystyle (x',y')}
:或平面或轴关于原点的逆时针旋转,在新平面中的坐标将顺时针旋转到旧坐标。在这种情况下,如果在旧平面中的坐标是
(
x
,
y
)
{displaystyle (x,y)}
,同一个向量在新平面中的坐标是
(
x
′
,
y
′
)
{displaystyle (x',y')}
,则:或向量(x, y)的大小同于向量 (x′, y′)的大小。复数可以看作是在复平面中的二维向量,它的尾部在原点而头部由这个复数给出。设是这样一个复数。它的实部是横坐标而虚部是纵坐标。则z可逆时针旋转角度θ,通过乘以
e
i
θ
{displaystyle e^{itheta }}
(参见欧拉公式, §2)。这可以被看作对应于在§ 1中描述的旋转。因为复数的乘法是交换性的,不同于在更高维中的情况,二维旋转是可交换的。在普通三维空间中,坐标旋转可以用欧拉角来定义,或关于要绕其旋转的向量和一个单一的旋转角度构成的轴角定义。关于原点的旋转最容易使用叫做旋转矩阵的3×3 矩阵变换来计算。关于其他点的旋转可以使用表现齐次坐标的4×4矩阵来描述。表现在三维空间中的旋转的一种可供选择的方式是四元数。四元数提供了表示在三维中旋转和方向的另一种方式。它们应用与计算机图形学、控制理论、信号处理和轨道力学中。例如,在太空船的姿态控制系统中常用四元数来下达指令,还用于测距它们的当前姿态。基本原理是组合很多四元数变换比组合很多矩阵变换在数值上更加稳定。描述旋转的所有矩阵的集合M(v,θ)加上矩阵乘法运算叫做旋转群:SO(3)。
相关
- 布鲁氏菌病布鲁氏杆菌病,又名地中海弛张热、马耳他热、波浪热(undulant fever)、波状热,是一种人畜共通传染病,由布鲁氏杆菌属(英语:Brucella)引致。这种细菌可寄宿绵羊、山羊、猪和牛等动物
- 菌株分型(strain)是生物学分类使用的概念。指病毒的毒株。例如,不同的流感毒株的感染性不同。细菌或真菌的菌株。是具有不同基因型并能稳定遗传的亚型。植物学与农学的品系,指源自共
- 俄克拉何马州坐标:35°30′N 98°00′W / 35.5°N 98°W / 35.5; -98俄克拉荷马州(切罗基语:ᎠᏍᎦᏯ ᎩᎦᎨᏱ,转写: Asgaya gigageyi,或者ᎣᎦᎳᎰᎹ(音译自英语);波泥语:Uukuhuúwa;卡育加语:Ga
- 工业化工业化(美:industrialization,英:industrialisation)是人类社会由前工业(累积资本速度缓慢的农业畜牧业经济)到工业状态的社会及经济改变过程(见前工业社会)。此一社会及经济改变与技
- 达雷尔·伊萨达雷尔·伊萨(Darrell Issa;1953年11月1日-)是美国的一位政治人物。2013年至2019年间,他是加利福尼亚州第49选举区选出的美国众议院议员。他的党籍是共和党。伊萨曾经是一位商人
- 资优资优(英语:gifted)是指先天性的、异于平常的智能。这种趋势从出生开始在其整个生涯内均有体现。而这种趋势并非指世间一般所谓的对外的成功,而是指其内在的“掌握学习方法的天分
- 蛋白质超家族蛋白质超家族(英语:protein superfamily)是对可以找到共同祖先的最大一组蛋白质的合称。一般而言,共同祖先是基于结构比对(英语:Structural alignment)和物理性质得出的,即使序列相
- 真染色质真染色质(英文:Euchromatin,又译同染色质或常染色质)是基因密度较高的染色质,多在细胞周期的S期进行复制,且通常具有转录活性,能够生产蛋白质。真染色质在真核生物与原核生物的细胞
- 西俄勒冈州立大学西俄勒冈大学是美国俄勒冈州的一所公立大学,1856年设立。学生约6千人。旧名西俄勒冈州立大学。
- 代谢物组代谢物组(英语:Metabolome)是指在一个生物样品中发现的完整的一套小分子化学物质。所述生物样品可以是一个细胞,一个细胞器,一个器官,一个组织,一个组织提取物,一个生物流体或整个生