旋转

✍ dations ◷ 2025-12-11 13:45:07 #旋转
旋转在几何和线性代数中是描述刚体围绕一个固定点的运动的在平面或空间中的变换。旋转不同于没有固定点的平移,和翻转变换的形体的反射。旋转和上面提及的变换是等距的,它们保留在任何两点之间的距离在变换之后不变。在讨论旋转的时候理解参照系是重要的。一种观点来看,你可以保持坐标轴固定旋转向量。而从另一观点出发,你可以保持向量固定旋转坐标系。在第一种观点看来,坐标或向量关于原点的逆时针旋转;或者从第二种观点看来,平面或轴关于原点的顺时针旋转。这里的 ( x , y ) {displaystyle (x,y)} 被旋转了 θ {displaystyle theta } 并希望知道旋转后的坐标 ( x ′ , y ′ ) {displaystyle (x',y')} :或平面或轴关于原点的逆时针旋转,在新平面中的坐标将顺时针旋转到旧坐标。在这种情况下,如果在旧平面中的坐标是 ( x , y ) {displaystyle (x,y)} ,同一个向量在新平面中的坐标是 ( x ′ , y ′ ) {displaystyle (x',y')} ,则:或向量(x, y)的大小同于向量 (x′, y′)的大小。复数可以看作是在复平面中的二维向量,它的尾部在原点而头部由这个复数给出。设是这样一个复数。它的实部是横坐标而虚部是纵坐标。则z可逆时针旋转角度θ,通过乘以 e i θ {displaystyle e^{itheta }} (参见欧拉公式, §2)。这可以被看作对应于在§ 1中描述的旋转。因为复数的乘法是交换性的,不同于在更高维中的情况,二维旋转是可交换的。在普通三维空间中,坐标旋转可以用欧拉角来定义,或关于要绕其旋转的向量和一个单一的旋转角度构成的轴角定义。关于原点的旋转最容易使用叫做旋转矩阵的3×3 矩阵变换来计算。关于其他点的旋转可以使用表现齐次坐标的4×4矩阵来描述。表现在三维空间中的旋转的一种可供选择的方式是四元数。四元数提供了表示在三维中旋转和方向的另一种方式。它们应用与计算机图形学、控制理论、信号处理和轨道力学中。例如,在太空船的姿态控制系统中常用四元数来下达指令,还用于测距它们的当前姿态。基本原理是组合很多四元数变换比组合很多矩阵变换在数值上更加稳定。描述旋转的所有矩阵的集合M(v,θ)加上矩阵乘法运算叫做旋转群:SO(3)。

相关

  • 古北界古北界是八个动物分区中最大的一个,分布在旧大陆北方,因此称为古北界。它包括欧洲大陆,喜马拉雅山脉以北的区域,非洲北部以及阿拉伯半岛的中北部。古北界(Palearctic realm)分成
  • 牙齿牙齿存在于很多脊椎动物(鸟类除外)的头部(或口部)内、功能用于咀嚼食物的钙化组织。肉食性动物尤其倚赖牙齿进行猎食或搏斗、御敌。牙齿的构成成分不是骨骼,而是由动物体内不同
  • 割礼割礼(又名包皮切割),天主教名割损,是一种宗教仪式,通常是指对男孩施行的割礼,方法是把阴茎上的包皮割去。早期的山洞壁画和古埃及坟穴已有关于割礼的描述,中东的不少宗教也有施行割
  • 色氨酸色氨酸(英语:Tryptophan, 缩写Trp或W)是22个标准氨基酸之一,人体不能合成的必需氨基酸,因此它须从食物中汲取。它的标准遗传密码的密码子编码为UGG,只有L-立体异构体色氨酸有构造
  • 安眠药安眠药(英语:Hypnotic) (源自希腊语 Hypnos, sleep(睡眠)),是一类精神药物,用来提升睡眠品质,治疗失眠或术前麻醉,服用过量会致死。目前用于镇静(Sedation)的只有Afloqualone与Cloroqua
  • 酒渣鼻酒糟鼻(Rosacea,又称玫瑰痤疮)是一种以脸部红斑 和丘疹(有时)为特点的慢性皮肤病。酒糟鼻在所有年龄层都可能发病并且分为四种类型,其中三种患及皮肤,而第四种患及眼睛。疾病若得不
  • 碰触碰触 (Dotyk) 是波兰歌手Edyta Górniak的首张专辑,于1995年5月8日由波兰百代唱片公司发行。该专辑在波兰专辑榜获得数周冠军,仅三日突破黄金,二个月获得白金。迄今为止,已被认
  • 千米千米亦称公里(法语:kilomètre → 英式英文:kilometre、美式英文:kilometer),是一种长度计量单位,等于一千米,是国际单位制之一,符号为km。根据定义,光在真空中每秒传播30万千米。在口
  • 土壤生态学土壤学是研究土壤及其生成的学科,是自然地理学的分支。它对研究植物的生长,繁殖以至分布都起着重要影响。 从农业角度来看,土壤是指陆地上能够让植物生长的疏松表层。英语pedo
  • 伦巴第伦巴第(意大利语:Lombardia,意大利语发音:)是一个位于阿尔卑斯山和波河的一个意大利北部大区。它与意大利的其它大区皮埃蒙特、艾米利亚-罗马涅、威尼托、特伦蒂诺-上阿迪杰以及