旋转

✍ dations ◷ 2025-12-04 19:19:17 #旋转
旋转在几何和线性代数中是描述刚体围绕一个固定点的运动的在平面或空间中的变换。旋转不同于没有固定点的平移,和翻转变换的形体的反射。旋转和上面提及的变换是等距的,它们保留在任何两点之间的距离在变换之后不变。在讨论旋转的时候理解参照系是重要的。一种观点来看,你可以保持坐标轴固定旋转向量。而从另一观点出发,你可以保持向量固定旋转坐标系。在第一种观点看来,坐标或向量关于原点的逆时针旋转;或者从第二种观点看来,平面或轴关于原点的顺时针旋转。这里的 ( x , y ) {displaystyle (x,y)} 被旋转了 θ {displaystyle theta } 并希望知道旋转后的坐标 ( x ′ , y ′ ) {displaystyle (x',y')} :或平面或轴关于原点的逆时针旋转,在新平面中的坐标将顺时针旋转到旧坐标。在这种情况下,如果在旧平面中的坐标是 ( x , y ) {displaystyle (x,y)} ,同一个向量在新平面中的坐标是 ( x ′ , y ′ ) {displaystyle (x',y')} ,则:或向量(x, y)的大小同于向量 (x′, y′)的大小。复数可以看作是在复平面中的二维向量,它的尾部在原点而头部由这个复数给出。设是这样一个复数。它的实部是横坐标而虚部是纵坐标。则z可逆时针旋转角度θ,通过乘以 e i θ {displaystyle e^{itheta }} (参见欧拉公式, §2)。这可以被看作对应于在§ 1中描述的旋转。因为复数的乘法是交换性的,不同于在更高维中的情况,二维旋转是可交换的。在普通三维空间中,坐标旋转可以用欧拉角来定义,或关于要绕其旋转的向量和一个单一的旋转角度构成的轴角定义。关于原点的旋转最容易使用叫做旋转矩阵的3×3 矩阵变换来计算。关于其他点的旋转可以使用表现齐次坐标的4×4矩阵来描述。表现在三维空间中的旋转的一种可供选择的方式是四元数。四元数提供了表示在三维中旋转和方向的另一种方式。它们应用与计算机图形学、控制理论、信号处理和轨道力学中。例如,在太空船的姿态控制系统中常用四元数来下达指令,还用于测距它们的当前姿态。基本原理是组合很多四元数变换比组合很多矩阵变换在数值上更加稳定。描述旋转的所有矩阵的集合M(v,θ)加上矩阵乘法运算叫做旋转群:SO(3)。

相关

  • 遗传重组遗传重组(genetic recombination;亦称基因重组(genetic reshuffling))在遗传学上的重组、是指DNA片段断裂并且转移位置的现象。发生在减数分裂时非姐妹染色单体上的基因结合。
  • 睾酮睾酮(testosterone)(又称睾固酮、睾丸素、睾丸酮或睾甾酮、睾脂酮)是类固醇激素,由男性的睾丸或女性的卵巢分泌,肾上腺亦分泌少量睾酮。睾酮是主要的雌雄激素及蛋白同化甾类。不论
  • 末日世界末日包括以下几种层次:
  • 睡眠不足睡眠剥夺(英语:sleep deprivation),又称作睡眠不足(英语:insufficient sleep)可以是长期的,也可以是短期的。长期的睡眠不足可能会导致疲劳、白天昏昏欲睡、反应迟钝、体重增加或减
  • 皮浪主义皮浪主义,或皮浪怀疑主义见于2世纪末3世纪初时塞克斯都·恩披里柯著作《皮朗主义纲要》(Πυῤῥώνειοι ὑποτύπωσεις,Outlines of Pyrrhonism),为前1世纪时埃奈
  • 跟腱跟腱滑囊炎,又称跟腱后滑囊炎、脚跟后滑囊炎、或阿基里斯滑囊炎,是指位于跟骨(英语:Calcaneus)连接处上方的滑囊炎,该滑囊位于跟腱的后侧(即表浅侧),常导因于过度使用或鞋后缘压迫,造
  • 高果糖玉米糖浆高果糖浆(英语:High-fructose corn syrup、简称HFCS)亦称果葡糖浆、高果糖玉米糖浆或葡萄糖异构糖浆,是以酶法糖化淀粉所得到的糖化液经葡萄糖异构酶的异构作用,将一部分葡萄糖异
  • 动植物生物系统层级关系:生物圈 > 生态系统 > 群落 > 种群 > 个体生物 (拉丁语,德语: Organismus, 英语:Organism,又称有机体)是指称类生命的个体。在生物学和生态学中, 地球上约有870万种
  • 生物恐怖主义生物恐怖主义是恐怖主义涉及有意释放或传播的生物制剂(细菌、病毒或毒素)。这可能会对自然或人类有害。根据美国疾病控制与预防中心: .mw-parser-output .templatequote{margi
  • RNAiRNA干扰(RNA interference,缩写为RNAi)是指一种分子生物学上由双链RNA诱发的基因沉默现象,其机制是通过阻碍特定基因的转录或翻译来抑制基因表达。当细胞中导入与内源性mRNA编码