旋转

✍ dations ◷ 2025-12-03 19:06:37 #旋转
旋转在几何和线性代数中是描述刚体围绕一个固定点的运动的在平面或空间中的变换。旋转不同于没有固定点的平移,和翻转变换的形体的反射。旋转和上面提及的变换是等距的,它们保留在任何两点之间的距离在变换之后不变。在讨论旋转的时候理解参照系是重要的。一种观点来看,你可以保持坐标轴固定旋转向量。而从另一观点出发,你可以保持向量固定旋转坐标系。在第一种观点看来,坐标或向量关于原点的逆时针旋转;或者从第二种观点看来,平面或轴关于原点的顺时针旋转。这里的 ( x , y ) {displaystyle (x,y)} 被旋转了 θ {displaystyle theta } 并希望知道旋转后的坐标 ( x ′ , y ′ ) {displaystyle (x',y')} :或平面或轴关于原点的逆时针旋转,在新平面中的坐标将顺时针旋转到旧坐标。在这种情况下,如果在旧平面中的坐标是 ( x , y ) {displaystyle (x,y)} ,同一个向量在新平面中的坐标是 ( x ′ , y ′ ) {displaystyle (x',y')} ,则:或向量(x, y)的大小同于向量 (x′, y′)的大小。复数可以看作是在复平面中的二维向量,它的尾部在原点而头部由这个复数给出。设是这样一个复数。它的实部是横坐标而虚部是纵坐标。则z可逆时针旋转角度θ,通过乘以 e i θ {displaystyle e^{itheta }} (参见欧拉公式, §2)。这可以被看作对应于在§ 1中描述的旋转。因为复数的乘法是交换性的,不同于在更高维中的情况,二维旋转是可交换的。在普通三维空间中,坐标旋转可以用欧拉角来定义,或关于要绕其旋转的向量和一个单一的旋转角度构成的轴角定义。关于原点的旋转最容易使用叫做旋转矩阵的3×3 矩阵变换来计算。关于其他点的旋转可以使用表现齐次坐标的4×4矩阵来描述。表现在三维空间中的旋转的一种可供选择的方式是四元数。四元数提供了表示在三维中旋转和方向的另一种方式。它们应用与计算机图形学、控制理论、信号处理和轨道力学中。例如,在太空船的姿态控制系统中常用四元数来下达指令,还用于测距它们的当前姿态。基本原理是组合很多四元数变换比组合很多矩阵变换在数值上更加稳定。描述旋转的所有矩阵的集合M(v,θ)加上矩阵乘法运算叫做旋转群:SO(3)。

相关

  • 尸检验尸亦称尸体解剖、尸体检验、尸检,是一个彻底检查尸体的医疗程序,以确定死亡的原因和方式并评估任何可能存在的疾病或损伤。通常由病理学家、法医或验尸官等专门人员行验尸工
  • 美分美分可以指:
  • 科斯岛科斯岛(希腊语:Κως,希腊语发音:,英语:Kos或Cos,英语 发音: /kɒs/或/kɔːs/)是希腊南斯波斯泽斯群岛(英语:Southern Sporades)或十二群岛中的一个岛屿 ,傍土耳其的哥科瓦海湾(Gökova)
  • 拜占庭拜占庭(希腊语:Βυζάντιον,拉丁语:Byzantium)是一个古希腊城市,也为现今土耳其伊斯坦布尔(君士坦丁堡)的旧名,相传是从墨伽拉来的殖民于公元前667年建立的。拜占庭的名字据说
  • 红眼结膜炎(英语:Conjunctivitis,亦称Pink Eye),俗称红眼症,是一种发生在结膜的炎症,也会发生在眼睑内侧表面,会让眼睛泛红或带有粉红色,可能会很痒、疼痛、有灼热感或搔痒感,罹患结膜炎的
  • MIT马萨诸塞理工学院(英语:Massachusetts Institute of Technology,缩写为MIT),位于美国马萨诸塞州剑桥市,是一所著名的私立研究型大学。学校成立于1861年,主校区沿查尔斯河而建,当时目
  • 记忆异常心理学 行为遗传学 生物心理学 心理药物学 认知心理学 比较心理学 跨文化心理学 文化心理学 差异心理学(英语:Differential psychology) 发展心理学 演化心理学 实验心理学
  • 六氟苯六氟苯,是一种有机芳香化合物,分子式C6F6,为苯的六个氢原子均被氟取代的衍生物。有机化学中常用于光化学反应的溶剂,除此之外,还有以下用途:直接使用苯与单质氟反应无法得到六氟苯
  • 意大利金皮庸意大利坎皮奥内(意大利语:Campione d'Italia)是一个座落于卢加诺湖湖畔的意大利城镇,行政上属伦巴第科莫省的一部分。然而,坎皮奥内与意大利本土并没有直接接壤,其全境皆为瑞士提
  • BaS硫化钡(化学式:BaS)是钡的硫化物,室温下为白色等轴晶系晶体,不纯时为浅灰色、黄绿色、浅棕色或黑色的粉末。它是第一个制得的磷光体材料,性质和制备都因此而被广泛研究过。用适量