影像降噪

✍ dations ◷ 2025-09-07 22:33:13 #影像科技

影像降噪的目的为移除影像中不必要的噪声,保留影像中较为重要的细节等资讯,使得到的图像看似清晰且洁净。不论是使用数码相机或是传统的底片,照出来的相片时常产生各种不同的噪声。现今的生活中有大量的数位影像拍摄的品质不尽良好,即便是在使用了良好的数码相机,影像降噪等后制的影像重建技术仍被广为利用,占有重要的一席之地,目前有多种降噪的算法被提出来解决此问题。

现实中的图像在传输过程中,常受到成像设备和外部环境噪声的干扰,受到此影响产生的图像称为含噪图像或噪声图像,减少此图像中噪声的过程即为影像降噪。

噪声是图像干扰的重要原因之一。

一幅图像在实际的应用上可能存在各式各样的噪声,根据噪声与讯号的关系可将其分为三个种类:(f(x,y)表示原始图像,g(x,y)表示图像讯号,n(x,y)表示噪声)

透过测量讯号的标准差 ,我们可以得到讯号对噪声比(Signal to Noise Ratio)为:

S N R = σ ( u ) σ ( n ) {\displaystyle SNR={\frac {\sigma (u)}{\sigma (n)}}}

其中 σ ( u ) {\displaystyle \sigma (u)} 所代表的为讯号本身的标准差,而 σ ( n ) {\displaystyle \sigma (n)} 则是噪声的标准差。根据标准差的公式, σ ( u ) {\displaystyle \sigma (u)} 又可以写成:

σ ( u ) = 1 | I | i I ( u ( i ) u ( i ) ¯ ) 2 {\displaystyle \sigma (u)={\frac {1}{\left|I\right|}}\sum _{i\in I}^{}(u(i)-{\overline {u(i)}})^{2}}

一般来说,品质好的图片其标准差为 60 {\displaystyle 60} 左右,而我们在一般的图片上加上高斯白噪声去测试噪声对数位影像的影响。

首先,当我们把 σ ( n ) {\displaystyle \sigma (n)} 设为 3 {\displaystyle 3} ,得到的 S N R {\displaystyle SNR} 60 3 = 20 {\displaystyle {\frac {60}{3}}=20} ,此时的图片几乎没什么可以观察到的变化。然而即便我们持续降低 S N R {\displaystyle SNR} 直到 2 {\displaystyle 2} ,我们仍然能够清楚辨认图片中重要的元素。这个结果告诉了我们,影像降噪的算法可行性似乎满高的,但其实不然。对于降噪的算法来说,是非常困难去辨别噪声以及图片中的“小细节”有可能同时把这些元素都移除。此外也有可能在移除这些噪声时的同时对图片产生一些新的变动,例如:模糊、棋盘效应。

要解释这样的原因,是由于影像降噪算法基本上是根据:

去进行噪声的移除。在一般的方法中,会假设噪声是震荡变动的,而影像是平滑、整块相连。因此,这些方法会根据平滑性区分噪声以及影像,然而,在影像中一些细微的结构震荡幅度常常会跟噪声差不多,相对的,白噪声有包含很多低频且平滑的部分。所以根据平滑度来直接分隔噪声有时并不是良好的方法。以下介绍各种不同且有效降噪的方法。

高斯平滑的原理在于将影像和高斯滤波器进行卷积来借此使影像模糊而去移除噪声以及细节。换句话说,通过高斯平滑所得到的输出像素就是该输出像素周遭像素的加权平均,每一个邻近像素的权重就是根据高斯分布来设计。因为此设计,使得高斯的滤波器比均值滤波器更柔滑且边缘保存得更好。

若是观察高斯滤波器的频率响应,可以发现它是低通滤波器,因此表示著高斯平滑是用来移除图片中高频的部分。

利用像是热方程式的部分微分等式(PDE)来去除图片中的噪声,但同时又能够保存图片中重要的性质像是:边界,内容。跟一般的扩散程序的不同之处在于此通量函式(flux function)能够限制扩散程序运作的区域边界。随着慢慢接近图片某区域的边界,扩散会被限制的越大,直到接近了边界,便会触发反向的扩散来因此强化图片的边界。

在介绍此方法之前,要先提到另外一个方法 3D denoising (3D NR)。3DNR假设图片中的随机噪声为时间函数如下式:
F ( t ) = S + N ( t ) {\displaystyle F(t)=S+N(t)}

S {\displaystyle S} 为静态的原始讯号, N ( t ) {\displaystyle N(t)} 为一随时间变化的噪声,且这个噪声属于平均值为 0 {\displaystyle 0} 之高斯正态分布。因此若是时间越久,加总越多的 F ( t ) {\displaystyle F(t)} 其平均值越容易使噪声项接近于零。因此某些相机会连续拍多张相片来取平均值去除噪声,然而遇到动态场景时却也可能造成不自然的残影。
而非区域平均这个方法可以看成3DNR的2D版,对同一张图片中相似的区块进行平均以去除噪声。例如,如果要对特定的区块 p {\displaystyle p} 去除噪声,可以找到相似的三个区块 q 1 , q 2 , q 3 {\displaystyle q1,q2,q3} 来得到除去噪声的区块 p {\displaystyle p'} ,其式如下:
p = w 0 p + w 1 q 1 + w 2 q 2 + w 3 q 3 , i = 0 3 w i = 1 {\displaystyle p'=w_{0}p+w_{1}q1+w_{2}q2+w_{3}q3,\sum _{i=0}^{3}w_{i}=1}

此项方法的原理是基于我们对小波参数的理解。一般来说,小波参数的值会受到噪声而有所影响,当小波参数的值越大代表的便是讯号所包含的资讯远大于噪声,因此我们可以得到一个快速的除噪声方法:

相关

  • 特殊感觉特殊感觉在医学和生理学上所说的是指一切在体感以外的感觉,包括以下四种感觉:这四种感觉的一个共同点是其感受器都位于头部。当然另一种感觉:前庭感觉的感受器也在头部,不过一般
  • 小汗腺外泌汗腺(英语:eccrine sweat gland),又名小汗腺,是人体主要的汗腺,存在于几乎所有皮肤,尤以手掌和脚掌的密度为最高,头部次之,躯干及四肢较少,在其他哺乳动物中则较为稀疏,主要存在于
  • 辅酶M辅酶M(英语:Coenzyme M,2-巯基乙烷磺酸)是在产甲烷菌代谢途径的甲基转移反应中所需的一种辅酶。此辅酶是具有结构式HSCH2CH2SO3-的阴离子,被称为2-巯基乙烷磺酸盐,缩写为HS-CoM。
  • 菌落形成单位菌落形成单位(CFU,colony-forming unit)是计算细菌数量的一种方法,其值越高表示样品中所含的细菌越多。菌落形成单位的计量方式与一般的计数方式不同,一般直接在显微镜下计算细菌
  • abbr class=abbr title=R38: 刺激皮肤R38/abbr警示性质标准词(英语:Risk Phrases,简写:R-phrases)是于《欧联指导标准67/548/EEC 附录III: 有关危险物品与其储备的特殊风险性质》里定义。该列表被集中并再出版于指导标准2001/
  • 日射量日射量是一个用来度量在给定的时间和区域内太阳辐射能量的数值,它通常被表达成每平方米太阳辐照的功率(W/m2)或千瓦每平方米每天 (kW/(m2·天))。日射量在早上10时到下午2时最
  • KrioRus公司KrioRus 是首间在俄罗斯成立的人体冷冻公司,亦是首间在美国以外成立提供人体冷冻的组织。该人体冷冻组织由八名俄罗斯人体冷冻科学家于2005年成立。KrioRus 提供不同的人体冷
  • 乐曲音乐,广义而言,就是指任何以声音组成的艺术。英文Music一词源于古希腊语的μουσική(mousike),意即缪斯(muse)女神的艺术。而中文的音乐二字,许慎《说文解字》解释为“音,声也。
  • 孙云铸孙云铸(1895年11月-1979年1月5日),字铁仙,江苏高邮人,中国古生物学家、地质学家,中国科学院院士,中国古生物学与地层学领域的主要奠基人。孙云铸于1916年考入北洋大学采矿专业,次年转
  • 免疫原性人体免疫系统对于特定抗原能够产生免疫反应,则称其有免疫原性。与反应原性不同之处在于人体在对某些抗原本身不会直接产生免疫反应,而要在类似的另一种抗原刺激下,获得对前一种