影像降噪

✍ dations ◷ 2024-12-22 21:42:16 #影像科技

影像降噪的目的为移除影像中不必要的噪声,保留影像中较为重要的细节等资讯,使得到的图像看似清晰且洁净。不论是使用数码相机或是传统的底片,照出来的相片时常产生各种不同的噪声。现今的生活中有大量的数位影像拍摄的品质不尽良好,即便是在使用了良好的数码相机,影像降噪等后制的影像重建技术仍被广为利用,占有重要的一席之地,目前有多种降噪的算法被提出来解决此问题。

现实中的图像在传输过程中,常受到成像设备和外部环境噪声的干扰,受到此影响产生的图像称为含噪图像或噪声图像,减少此图像中噪声的过程即为影像降噪。

噪声是图像干扰的重要原因之一。

一幅图像在实际的应用上可能存在各式各样的噪声,根据噪声与讯号的关系可将其分为三个种类:(f(x,y)表示原始图像,g(x,y)表示图像讯号,n(x,y)表示噪声)

透过测量讯号的标准差 ,我们可以得到讯号对噪声比(Signal to Noise Ratio)为:

S N R = σ ( u ) σ ( n ) {\displaystyle SNR={\frac {\sigma (u)}{\sigma (n)}}}

其中 σ ( u ) {\displaystyle \sigma (u)} 所代表的为讯号本身的标准差,而 σ ( n ) {\displaystyle \sigma (n)} 则是噪声的标准差。根据标准差的公式, σ ( u ) {\displaystyle \sigma (u)} 又可以写成:

σ ( u ) = 1 | I | i I ( u ( i ) u ( i ) ¯ ) 2 {\displaystyle \sigma (u)={\frac {1}{\left|I\right|}}\sum _{i\in I}^{}(u(i)-{\overline {u(i)}})^{2}}

一般来说,品质好的图片其标准差为 60 {\displaystyle 60} 左右,而我们在一般的图片上加上高斯白噪声去测试噪声对数位影像的影响。

首先,当我们把 σ ( n ) {\displaystyle \sigma (n)} 设为 3 {\displaystyle 3} ,得到的 S N R {\displaystyle SNR} 60 3 = 20 {\displaystyle {\frac {60}{3}}=20} ,此时的图片几乎没什么可以观察到的变化。然而即便我们持续降低 S N R {\displaystyle SNR} 直到 2 {\displaystyle 2} ,我们仍然能够清楚辨认图片中重要的元素。这个结果告诉了我们,影像降噪的算法可行性似乎满高的,但其实不然。对于降噪的算法来说,是非常困难去辨别噪声以及图片中的“小细节”有可能同时把这些元素都移除。此外也有可能在移除这些噪声时的同时对图片产生一些新的变动,例如:模糊、棋盘效应。

要解释这样的原因,是由于影像降噪算法基本上是根据:

去进行噪声的移除。在一般的方法中,会假设噪声是震荡变动的,而影像是平滑、整块相连。因此,这些方法会根据平滑性区分噪声以及影像,然而,在影像中一些细微的结构震荡幅度常常会跟噪声差不多,相对的,白噪声有包含很多低频且平滑的部分。所以根据平滑度来直接分隔噪声有时并不是良好的方法。以下介绍各种不同且有效降噪的方法。

高斯平滑的原理在于将影像和高斯滤波器进行卷积来借此使影像模糊而去移除噪声以及细节。换句话说,通过高斯平滑所得到的输出像素就是该输出像素周遭像素的加权平均,每一个邻近像素的权重就是根据高斯分布来设计。因为此设计,使得高斯的滤波器比均值滤波器更柔滑且边缘保存得更好。

若是观察高斯滤波器的频率响应,可以发现它是低通滤波器,因此表示著高斯平滑是用来移除图片中高频的部分。

利用像是热方程式的部分微分等式(PDE)来去除图片中的噪声,但同时又能够保存图片中重要的性质像是:边界,内容。跟一般的扩散程序的不同之处在于此通量函式(flux function)能够限制扩散程序运作的区域边界。随着慢慢接近图片某区域的边界,扩散会被限制的越大,直到接近了边界,便会触发反向的扩散来因此强化图片的边界。

在介绍此方法之前,要先提到另外一个方法 3D denoising (3D NR)。3DNR假设图片中的随机噪声为时间函数如下式:
F ( t ) = S + N ( t ) {\displaystyle F(t)=S+N(t)}

S {\displaystyle S} 为静态的原始讯号, N ( t ) {\displaystyle N(t)} 为一随时间变化的噪声,且这个噪声属于平均值为 0 {\displaystyle 0} 之高斯正态分布。因此若是时间越久,加总越多的 F ( t ) {\displaystyle F(t)} 其平均值越容易使噪声项接近于零。因此某些相机会连续拍多张相片来取平均值去除噪声,然而遇到动态场景时却也可能造成不自然的残影。
而非区域平均这个方法可以看成3DNR的2D版,对同一张图片中相似的区块进行平均以去除噪声。例如,如果要对特定的区块 p {\displaystyle p} 去除噪声,可以找到相似的三个区块 q 1 , q 2 , q 3 {\displaystyle q1,q2,q3} 来得到除去噪声的区块 p {\displaystyle p'} ,其式如下:
p = w 0 p + w 1 q 1 + w 2 q 2 + w 3 q 3 , i = 0 3 w i = 1 {\displaystyle p'=w_{0}p+w_{1}q1+w_{2}q2+w_{3}q3,\sum _{i=0}^{3}w_{i}=1}

此项方法的原理是基于我们对小波参数的理解。一般来说,小波参数的值会受到噪声而有所影响,当小波参数的值越大代表的便是讯号所包含的资讯远大于噪声,因此我们可以得到一个快速的除噪声方法:

相关

  • 布鲁内尔艾米尔·布鲁内尔(Heinrich Emil Brunner,又译艾米尔·布伦纳,1889年-1966年),有着深远影响的瑞士籍新教神学家、新正统神学家,曾与卡尔·巴特共同推动了二十世纪上半叶欧洲德语系
  • 残疾人奥林匹克运动会残疾人奥林匹克运动会(英语:Paralympic Games),又译为帕拉林匹克运动会、伤残奥林匹克运动会,简称残奥会、残奥、帕奥,是一项为身心障碍者而举办的综合型国际体育赛事,词源由Parapl
  • 朝鲜冷杉朝鲜冷杉(学名:Abies koreana)是一种在韩国高山地区及济州岛生长的冷杉。它们生长在海拔1000-1900米的温带雨林中,气候寒冷及高雨量,夏天潮湿,冬天则经常下大雪。朝鲜冷杉是细小至
  • 伊莎贝尔·阿佳妮伊莎贝尔·雅丝敏娜·阿佳妮(法语:Isabelle Yasmina Adjani,1955年6月27日-),生于法国巴黎,法国电影女演员与歌手。 迄今为止,阿佳妮保持着凯撒奖最佳女主角获奖的最多次纪录(共5次),分
  • 中央政府中央政府或国家政府是国家全国事务主管机构的总称,联邦制国家的中央政府,即称“联邦政府”。中央政府通常的作用负责全国事务,如起草国家宪法和适用全国的法律、负责国防、外交
  • 贵州小春虫贵州小春虫(学名Vernanimalcula guizhouena)是一种化石,相信是最为古老的两侧对称动物。它们出土于6亿至5.8亿年前的地层,只有0.1-0.2毫米阔。由于它们生存于马林诺冰期(英语:Mari
  • 无烟煤无烟煤(anthracite、希腊语:ανθρακίτης,意为“类煤”,衍生于“木炭”的希腊语άνθραξ)是一种坚硬、致密且高光泽(英语:luster (mineralogy))的煤矿品种。在所有的煤
  • M1钢盔M1钢盔(英语:M1 helmet)是一款第二次世界大战至1985年期间使用于美国军队中的战斗头盔,之后由PASGT头盔取代。美军将M1头盔作为制式装备使用长达40年,并成为其著名的代表形象之一
  • S-IVBname = 'Aero', description = '航空太空科技(航空航天科技)', content = {{ type = 'text', text = [=[本页面没有类似于NoteTA的数量限制。 请自行修改分类名。在NoteTA样板
  • 2019冠状病毒病吉林省疫情2019冠状病毒病吉林省疫情,介绍在2019冠状病毒病疫情中,在中华人民共和国吉林省发生的情况。截至2020年5月1日24时,吉林省全省有确诊病例112例,其中境外输入19例,治愈出院102例,死