影像降噪

✍ dations ◷ 2025-04-26 12:04:37 #影像科技

影像降噪的目的为移除影像中不必要的噪声,保留影像中较为重要的细节等资讯,使得到的图像看似清晰且洁净。不论是使用数码相机或是传统的底片,照出来的相片时常产生各种不同的噪声。现今的生活中有大量的数位影像拍摄的品质不尽良好,即便是在使用了良好的数码相机,影像降噪等后制的影像重建技术仍被广为利用,占有重要的一席之地,目前有多种降噪的算法被提出来解决此问题。

现实中的图像在传输过程中,常受到成像设备和外部环境噪声的干扰,受到此影响产生的图像称为含噪图像或噪声图像,减少此图像中噪声的过程即为影像降噪。

噪声是图像干扰的重要原因之一。

一幅图像在实际的应用上可能存在各式各样的噪声,根据噪声与讯号的关系可将其分为三个种类:(f(x,y)表示原始图像,g(x,y)表示图像讯号,n(x,y)表示噪声)

透过测量讯号的标准差 ,我们可以得到讯号对噪声比(Signal to Noise Ratio)为:

S N R = σ ( u ) σ ( n ) {\displaystyle SNR={\frac {\sigma (u)}{\sigma (n)}}}

其中 σ ( u ) {\displaystyle \sigma (u)} 所代表的为讯号本身的标准差,而 σ ( n ) {\displaystyle \sigma (n)} 则是噪声的标准差。根据标准差的公式, σ ( u ) {\displaystyle \sigma (u)} 又可以写成:

σ ( u ) = 1 | I | i I ( u ( i ) u ( i ) ¯ ) 2 {\displaystyle \sigma (u)={\frac {1}{\left|I\right|}}\sum _{i\in I}^{}(u(i)-{\overline {u(i)}})^{2}}

一般来说,品质好的图片其标准差为 60 {\displaystyle 60} 左右,而我们在一般的图片上加上高斯白噪声去测试噪声对数位影像的影响。

首先,当我们把 σ ( n ) {\displaystyle \sigma (n)} 设为 3 {\displaystyle 3} ,得到的 S N R {\displaystyle SNR} 60 3 = 20 {\displaystyle {\frac {60}{3}}=20} ,此时的图片几乎没什么可以观察到的变化。然而即便我们持续降低 S N R {\displaystyle SNR} 直到 2 {\displaystyle 2} ,我们仍然能够清楚辨认图片中重要的元素。这个结果告诉了我们,影像降噪的算法可行性似乎满高的,但其实不然。对于降噪的算法来说,是非常困难去辨别噪声以及图片中的“小细节”有可能同时把这些元素都移除。此外也有可能在移除这些噪声时的同时对图片产生一些新的变动,例如:模糊、棋盘效应。

要解释这样的原因,是由于影像降噪算法基本上是根据:

去进行噪声的移除。在一般的方法中,会假设噪声是震荡变动的,而影像是平滑、整块相连。因此,这些方法会根据平滑性区分噪声以及影像,然而,在影像中一些细微的结构震荡幅度常常会跟噪声差不多,相对的,白噪声有包含很多低频且平滑的部分。所以根据平滑度来直接分隔噪声有时并不是良好的方法。以下介绍各种不同且有效降噪的方法。

高斯平滑的原理在于将影像和高斯滤波器进行卷积来借此使影像模糊而去移除噪声以及细节。换句话说,通过高斯平滑所得到的输出像素就是该输出像素周遭像素的加权平均,每一个邻近像素的权重就是根据高斯分布来设计。因为此设计,使得高斯的滤波器比均值滤波器更柔滑且边缘保存得更好。

若是观察高斯滤波器的频率响应,可以发现它是低通滤波器,因此表示著高斯平滑是用来移除图片中高频的部分。

利用像是热方程式的部分微分等式(PDE)来去除图片中的噪声,但同时又能够保存图片中重要的性质像是:边界,内容。跟一般的扩散程序的不同之处在于此通量函式(flux function)能够限制扩散程序运作的区域边界。随着慢慢接近图片某区域的边界,扩散会被限制的越大,直到接近了边界,便会触发反向的扩散来因此强化图片的边界。

在介绍此方法之前,要先提到另外一个方法 3D denoising (3D NR)。3DNR假设图片中的随机噪声为时间函数如下式:
F ( t ) = S + N ( t ) {\displaystyle F(t)=S+N(t)}

S {\displaystyle S} 为静态的原始讯号, N ( t ) {\displaystyle N(t)} 为一随时间变化的噪声,且这个噪声属于平均值为 0 {\displaystyle 0} 之高斯正态分布。因此若是时间越久,加总越多的 F ( t ) {\displaystyle F(t)} 其平均值越容易使噪声项接近于零。因此某些相机会连续拍多张相片来取平均值去除噪声,然而遇到动态场景时却也可能造成不自然的残影。
而非区域平均这个方法可以看成3DNR的2D版,对同一张图片中相似的区块进行平均以去除噪声。例如,如果要对特定的区块 p {\displaystyle p} 去除噪声,可以找到相似的三个区块 q 1 , q 2 , q 3 {\displaystyle q1,q2,q3} 来得到除去噪声的区块 p {\displaystyle p'} ,其式如下:
p = w 0 p + w 1 q 1 + w 2 q 2 + w 3 q 3 , i = 0 3 w i = 1 {\displaystyle p'=w_{0}p+w_{1}q1+w_{2}q2+w_{3}q3,\sum _{i=0}^{3}w_{i}=1}

此项方法的原理是基于我们对小波参数的理解。一般来说,小波参数的值会受到噪声而有所影响,当小波参数的值越大代表的便是讯号所包含的资讯远大于噪声,因此我们可以得到一个快速的除噪声方法:

相关

  • 音乐美国音乐反映了该国多元种族混合的文化。该国音乐受到西非、爱尔兰(英语:music of Ireland)、苏格兰(英语:music of Scotland)和欧洲大陆音乐的影响,最出名的音乐类型包括爵士、蓝
  • 恩他卡朋恩他卡朋,学名为Entacapone。吸收/分布:代谢/排泄:Entacapone引起的副作用主要和dopaminergic作用增加有关,当临床使用发现上述副作用时,调降levodopa的剂量约10~15﹪时可有效改善,常
  • +蒿甲醚复方蒿甲醚(Artemether/lumefantrine),常见商品名Coartem,为由蒿甲醚及苯芴醇混和而成的副方抗疟药。本品主要用于对抗具有氯喹抗药性的恶性疟原虫,本品通常不会用于预防疟疾,为一
  • 黑素细胞黑素细胞(melanocyte),又叫痣细胞(nevus cell),是一种动物细胞,带有黑色素或是其他类似的色素,极大多数情况下位于皮肤表皮的基底层(英语:Stratum basale)、眼睛的葡萄膜(虹膜后面的色素
  • 3’端聚线苷酸尾多腺苷酸化(英语:Polyadenylation)是指多聚腺苷酸与信使RNA(mRNA)分子的共价链接。在蛋白质生物合成的过程中,这是产生准备作翻译的成熟mRNA的方式的一部分。在真核生物中,多聚腺苷
  • 嫦娥嫦娥,原称恒我,姮娥、常娥,是中国神话人物,美貌非凡,温柔贤慧,风流仙子,为后羿之妻。神话中为了保持年轻美貌,遂偷食西王母赐予后羿的不死药而奔月,此即嫦娥奔月神话。《淮南子·览冥
  • 蝇虎科570属,详见内文蝇虎科或跳蛛科(学名:Salticidae),又名“虩”(读音同“隙”),是蜘蛛目的一科,也是蝇虎总科的唯一科。根据ITIS引用的2011年数据,本科之下有570个属。部分动物学家尝试将
  • 层侵纪层侵纪(Rhyacian,符号PP2)是地质时代中的一个纪,开始于同位素年龄2300±0百万年(Ma),结束于2050±0Ma。层侵纪期间蓝藻、细菌繁盛。此时期形成布希维尔德火成岩复合体(英语:Bushveld
  • 2013年伦敦马拉松2013年伦敦马拉松为于2013年4月21日在英国伦敦举办的第33届年度伦敦马拉松比赛,为2013年年度第三个世界马拉松大赛(World Marathon Majors)赛事,根据统计共有34,631人参与这项活
  • 安妮·莱博维茨安妮·莱博维茨(英语:Annie Leibovitz, 1949年10月2日-),本名安娜-露·莱博维茨,美国肖像摄影师。安妮·莱博维茨出生于康乃狄克州沃特伯里,在家里六个小孩中排行第三。她是美国犹