影像降噪

✍ dations ◷ 2025-07-27 12:14:12 #影像科技

影像降噪的目的为移除影像中不必要的噪声,保留影像中较为重要的细节等资讯,使得到的图像看似清晰且洁净。不论是使用数码相机或是传统的底片,照出来的相片时常产生各种不同的噪声。现今的生活中有大量的数位影像拍摄的品质不尽良好,即便是在使用了良好的数码相机,影像降噪等后制的影像重建技术仍被广为利用,占有重要的一席之地,目前有多种降噪的算法被提出来解决此问题。

现实中的图像在传输过程中,常受到成像设备和外部环境噪声的干扰,受到此影响产生的图像称为含噪图像或噪声图像,减少此图像中噪声的过程即为影像降噪。

噪声是图像干扰的重要原因之一。

一幅图像在实际的应用上可能存在各式各样的噪声,根据噪声与讯号的关系可将其分为三个种类:(f(x,y)表示原始图像,g(x,y)表示图像讯号,n(x,y)表示噪声)

透过测量讯号的标准差 ,我们可以得到讯号对噪声比(Signal to Noise Ratio)为:

S N R = σ ( u ) σ ( n ) {\displaystyle SNR={\frac {\sigma (u)}{\sigma (n)}}}

其中 σ ( u ) {\displaystyle \sigma (u)} 所代表的为讯号本身的标准差,而 σ ( n ) {\displaystyle \sigma (n)} 则是噪声的标准差。根据标准差的公式, σ ( u ) {\displaystyle \sigma (u)} 又可以写成:

σ ( u ) = 1 | I | i I ( u ( i ) u ( i ) ¯ ) 2 {\displaystyle \sigma (u)={\frac {1}{\left|I\right|}}\sum _{i\in I}^{}(u(i)-{\overline {u(i)}})^{2}}

一般来说,品质好的图片其标准差为 60 {\displaystyle 60} 左右,而我们在一般的图片上加上高斯白噪声去测试噪声对数位影像的影响。

首先,当我们把 σ ( n ) {\displaystyle \sigma (n)} 设为 3 {\displaystyle 3} ,得到的 S N R {\displaystyle SNR} 60 3 = 20 {\displaystyle {\frac {60}{3}}=20} ,此时的图片几乎没什么可以观察到的变化。然而即便我们持续降低 S N R {\displaystyle SNR} 直到 2 {\displaystyle 2} ,我们仍然能够清楚辨认图片中重要的元素。这个结果告诉了我们,影像降噪的算法可行性似乎满高的,但其实不然。对于降噪的算法来说,是非常困难去辨别噪声以及图片中的“小细节”有可能同时把这些元素都移除。此外也有可能在移除这些噪声时的同时对图片产生一些新的变动,例如:模糊、棋盘效应。

要解释这样的原因,是由于影像降噪算法基本上是根据:

去进行噪声的移除。在一般的方法中,会假设噪声是震荡变动的,而影像是平滑、整块相连。因此,这些方法会根据平滑性区分噪声以及影像,然而,在影像中一些细微的结构震荡幅度常常会跟噪声差不多,相对的,白噪声有包含很多低频且平滑的部分。所以根据平滑度来直接分隔噪声有时并不是良好的方法。以下介绍各种不同且有效降噪的方法。

高斯平滑的原理在于将影像和高斯滤波器进行卷积来借此使影像模糊而去移除噪声以及细节。换句话说,通过高斯平滑所得到的输出像素就是该输出像素周遭像素的加权平均,每一个邻近像素的权重就是根据高斯分布来设计。因为此设计,使得高斯的滤波器比均值滤波器更柔滑且边缘保存得更好。

若是观察高斯滤波器的频率响应,可以发现它是低通滤波器,因此表示著高斯平滑是用来移除图片中高频的部分。

利用像是热方程式的部分微分等式(PDE)来去除图片中的噪声,但同时又能够保存图片中重要的性质像是:边界,内容。跟一般的扩散程序的不同之处在于此通量函式(flux function)能够限制扩散程序运作的区域边界。随着慢慢接近图片某区域的边界,扩散会被限制的越大,直到接近了边界,便会触发反向的扩散来因此强化图片的边界。

在介绍此方法之前,要先提到另外一个方法 3D denoising (3D NR)。3DNR假设图片中的随机噪声为时间函数如下式:
F ( t ) = S + N ( t ) {\displaystyle F(t)=S+N(t)}

S {\displaystyle S} 为静态的原始讯号, N ( t ) {\displaystyle N(t)} 为一随时间变化的噪声,且这个噪声属于平均值为 0 {\displaystyle 0} 之高斯正态分布。因此若是时间越久,加总越多的 F ( t ) {\displaystyle F(t)} 其平均值越容易使噪声项接近于零。因此某些相机会连续拍多张相片来取平均值去除噪声,然而遇到动态场景时却也可能造成不自然的残影。
而非区域平均这个方法可以看成3DNR的2D版,对同一张图片中相似的区块进行平均以去除噪声。例如,如果要对特定的区块 p {\displaystyle p} 去除噪声,可以找到相似的三个区块 q 1 , q 2 , q 3 {\displaystyle q1,q2,q3} 来得到除去噪声的区块 p {\displaystyle p'} ,其式如下:
p = w 0 p + w 1 q 1 + w 2 q 2 + w 3 q 3 , i = 0 3 w i = 1 {\displaystyle p'=w_{0}p+w_{1}q1+w_{2}q2+w_{3}q3,\sum _{i=0}^{3}w_{i}=1}

此项方法的原理是基于我们对小波参数的理解。一般来说,小波参数的值会受到噪声而有所影响,当小波参数的值越大代表的便是讯号所包含的资讯远大于噪声,因此我们可以得到一个快速的除噪声方法:

相关

  • 拟杆菌门拟杆菌门(Bacteroidetes)包括三大类细菌,即拟杆菌纲、黄杆菌纲、鞘脂杆菌纲。它们的相似性体现在核糖体16S RNA。很多拟杆菌纲的细菌种类生活在人或者动物的肠道中,有些时候成
  • 布鲁氏菌科布鲁氏菌属(Brucella) Crabtreella(英语:Crabtreella) Daeguia(英语:Daeguia) Falsochrobactrum(英语:Falsochrobactrum) 支动菌属(英语:Mycoplana)(Mycoplana) 苍白杆菌属(英语:Ochrobactrum)(O
  • 腈纶腈纶(Acrylic fiber)是一种合成纤维,主要成分是分子量约为100,000的聚丙烯腈。腈纶的单体至少含有85%的丙烯腈,并且添加有其他单体共聚,常选用的共聚分子有乙酸乙烯酯和丙烯酸甲
  • 彝历彝历是彝族的历法。目前已知有十月太阳历、十二月阴阳历、18月太阳历数种。彝族自古采十月太阳历。十月太阳历与《夏小正》同出一源,直到明清改土归流以后,才有些人改用十二月
  • 意外怀孕非预期怀孕(Unintended pregnancies)也称为意外怀孕、非计划怀孕或非期望怀孕,是在受孕时,女方没有预期会怀孕(或是不希望怀孕),却发生的怀孕,没有预期要怀孕的原因可能是时机不宜或
  • 老子八十一化《老子八十一化》,又名《太上老君历世应化图说》,描绘了老子起乎无始直至宋绍圣五年(公元1098元)之间的显化事迹,包含老子化胡。它形成于宋代,与宋朝观复大师谢守颧《太上混元圣纪
  • 雷诺氏综合征雷诺氏综合征(英语:Raynaud syndrome),也作雷诺现象(Raynaud phenomenon),是指由于血管痉挛(英语:vasospasm)而引起的一系列血管血流减少的情形。一般手指更容易受到影响,脚趾有时也会
  • 国家进出口商品检验局国家进出口商品检验局(简称国家商检局)是中华人民共和国国务院曾经设立的一个国家局。1949年11月,中央人民政府贸易部国外贸易司商检处成立,负责进出口货物的检验工作。根据中央
  • 拉科西·马加什拉科西·马加什(匈牙利语:Rákosi Mátyás;1892年3月9日-1971年2月5日),匈牙利共产主义政治人物,匈牙利人民共和国在1945~1956年期间的实际最高领导人,担任匈牙利共产党中央委员会总
  • 浙派浙派,是一个泛化了的概念,凡与浙江及其人物群体有关的学术或艺术派别,通常会冠之以“浙派”。现今较为经常提到的有:浙派绘画是明代前期中期中国画坛的重要绘画流派,明代中后期浙