影像降噪

✍ dations ◷ 2025-07-06 02:16:01 #影像科技

影像降噪的目的为移除影像中不必要的噪声,保留影像中较为重要的细节等资讯,使得到的图像看似清晰且洁净。不论是使用数码相机或是传统的底片,照出来的相片时常产生各种不同的噪声。现今的生活中有大量的数位影像拍摄的品质不尽良好,即便是在使用了良好的数码相机,影像降噪等后制的影像重建技术仍被广为利用,占有重要的一席之地,目前有多种降噪的算法被提出来解决此问题。

现实中的图像在传输过程中,常受到成像设备和外部环境噪声的干扰,受到此影响产生的图像称为含噪图像或噪声图像,减少此图像中噪声的过程即为影像降噪。

噪声是图像干扰的重要原因之一。

一幅图像在实际的应用上可能存在各式各样的噪声,根据噪声与讯号的关系可将其分为三个种类:(f(x,y)表示原始图像,g(x,y)表示图像讯号,n(x,y)表示噪声)

透过测量讯号的标准差 ,我们可以得到讯号对噪声比(Signal to Noise Ratio)为:

S N R = σ ( u ) σ ( n ) {\displaystyle SNR={\frac {\sigma (u)}{\sigma (n)}}}

其中 σ ( u ) {\displaystyle \sigma (u)} 所代表的为讯号本身的标准差,而 σ ( n ) {\displaystyle \sigma (n)} 则是噪声的标准差。根据标准差的公式, σ ( u ) {\displaystyle \sigma (u)} 又可以写成:

σ ( u ) = 1 | I | i I ( u ( i ) u ( i ) ¯ ) 2 {\displaystyle \sigma (u)={\frac {1}{\left|I\right|}}\sum _{i\in I}^{}(u(i)-{\overline {u(i)}})^{2}}

一般来说,品质好的图片其标准差为 60 {\displaystyle 60} 左右,而我们在一般的图片上加上高斯白噪声去测试噪声对数位影像的影响。

首先,当我们把 σ ( n ) {\displaystyle \sigma (n)} 设为 3 {\displaystyle 3} ,得到的 S N R {\displaystyle SNR} 60 3 = 20 {\displaystyle {\frac {60}{3}}=20} ,此时的图片几乎没什么可以观察到的变化。然而即便我们持续降低 S N R {\displaystyle SNR} 直到 2 {\displaystyle 2} ,我们仍然能够清楚辨认图片中重要的元素。这个结果告诉了我们,影像降噪的算法可行性似乎满高的,但其实不然。对于降噪的算法来说,是非常困难去辨别噪声以及图片中的“小细节”有可能同时把这些元素都移除。此外也有可能在移除这些噪声时的同时对图片产生一些新的变动,例如:模糊、棋盘效应。

要解释这样的原因,是由于影像降噪算法基本上是根据:

去进行噪声的移除。在一般的方法中,会假设噪声是震荡变动的,而影像是平滑、整块相连。因此,这些方法会根据平滑性区分噪声以及影像,然而,在影像中一些细微的结构震荡幅度常常会跟噪声差不多,相对的,白噪声有包含很多低频且平滑的部分。所以根据平滑度来直接分隔噪声有时并不是良好的方法。以下介绍各种不同且有效降噪的方法。

高斯平滑的原理在于将影像和高斯滤波器进行卷积来借此使影像模糊而去移除噪声以及细节。换句话说,通过高斯平滑所得到的输出像素就是该输出像素周遭像素的加权平均,每一个邻近像素的权重就是根据高斯分布来设计。因为此设计,使得高斯的滤波器比均值滤波器更柔滑且边缘保存得更好。

若是观察高斯滤波器的频率响应,可以发现它是低通滤波器,因此表示著高斯平滑是用来移除图片中高频的部分。

利用像是热方程式的部分微分等式(PDE)来去除图片中的噪声,但同时又能够保存图片中重要的性质像是:边界,内容。跟一般的扩散程序的不同之处在于此通量函式(flux function)能够限制扩散程序运作的区域边界。随着慢慢接近图片某区域的边界,扩散会被限制的越大,直到接近了边界,便会触发反向的扩散来因此强化图片的边界。

在介绍此方法之前,要先提到另外一个方法 3D denoising (3D NR)。3DNR假设图片中的随机噪声为时间函数如下式:
F ( t ) = S + N ( t ) {\displaystyle F(t)=S+N(t)}

S {\displaystyle S} 为静态的原始讯号, N ( t ) {\displaystyle N(t)} 为一随时间变化的噪声,且这个噪声属于平均值为 0 {\displaystyle 0} 之高斯正态分布。因此若是时间越久,加总越多的 F ( t ) {\displaystyle F(t)} 其平均值越容易使噪声项接近于零。因此某些相机会连续拍多张相片来取平均值去除噪声,然而遇到动态场景时却也可能造成不自然的残影。
而非区域平均这个方法可以看成3DNR的2D版,对同一张图片中相似的区块进行平均以去除噪声。例如,如果要对特定的区块 p {\displaystyle p} 去除噪声,可以找到相似的三个区块 q 1 , q 2 , q 3 {\displaystyle q1,q2,q3} 来得到除去噪声的区块 p {\displaystyle p'} ,其式如下:
p = w 0 p + w 1 q 1 + w 2 q 2 + w 3 q 3 , i = 0 3 w i = 1 {\displaystyle p'=w_{0}p+w_{1}q1+w_{2}q2+w_{3}q3,\sum _{i=0}^{3}w_{i}=1}

此项方法的原理是基于我们对小波参数的理解。一般来说,小波参数的值会受到噪声而有所影响,当小波参数的值越大代表的便是讯号所包含的资讯远大于噪声,因此我们可以得到一个快速的除噪声方法:

相关

  • 弗雷德里克·莱因斯弗雷德里克·莱因斯(英语:Frederick Reines,1918年3月16日-1998年8月26日),美国物理学家,加州大学尔湾分校教授,因为对中微子检测的贡献获1995年获诺贝尔物理学奖。1918年3月16日,出
  • 雅各布·帕里斯雅各布·帕里斯(葡萄牙语:Jacob Palis,1940年3月15日-),巴西数学家。2013年当选为中国科学院外籍院士。
  • 王建宇王建宇(1959年6月-),男,汉族,浙江宁波人,中国遥感专家,研究员,博士生导师,中国空间科学学会副理事长,中国地理学会环境分会副理事长,中国科学院上海技术物理研究所原所长,中国科学院院士,
  • 丹泽尔·华盛顿小丹泽尔·海耶斯·华盛顿(英语:Denzel Hayes Washington Jr.,1954年12月28日-)是一位美国男演员、电影导演和电影监制,较著名的是在2001年电影《训练日》中的演出获得2002年第74
  • 美国内战重演美国内战重演(American Civil War reenactment)是内战重演爱好者(Civil War reenactors、Civil War recreationists)致力去重演1861年至1865年美国南北战争的某些特定战役或相关
  • 马蒂厄·克雷库马蒂厄·克雷库(法语:Mathieu Kérékou,1933年9月2日-2015年10月14日)为非洲国家贝宁军事强人。他于塞内加尔接受军事训练后,于1972年10月26日,以少校身份发动武装政变,并获得贝宁
  • 环境工程学环境工程为应用科学与工程之方法来改善环境(包括空气、水、土地资源),进而为人类之居住以及其他生物体提供对健康有益的水、空气以及土壤,亦包括污染场址之复育。可经由教育大众
  • 儿童节 (日本)日本的儿童节原本在端午节,时间为农历五月五日。 在明治维新转向公历之后,日期被移至5月5日。儿童节最初是男生节,由男性祝贺儿子和感恩父亲,而女生节在三月三日。之后风俗改变,1
  • 希腊城邦城邦(古希腊语:πολις,古希腊语:,英语:Polis,复数形为πόλεις,,poleis),希腊文的字面意思是城市。它也代表了公民以及公民组成的群体。是古希腊一种政治共同体,以城市为单位形
  • 环戊二烯基钠环戊二烯基钠是一种有机钠化合物,化学式为C5H5Na。通常简称为NaCp或CpNa,其中Cp−是环戊二烯阴离子。在配位化学中,Cp也作为环戊二烯基配体的缩写。市售有环戊二烯基钠的THF的