欧拉-拉格朗日方程(英语:Euler-Lagrange equation)为变分法中的一条重要方程。它是一个二阶偏微分方程。它提供了求泛函的临界值(平稳值)函数,换句话说也就是求此泛函在其定义域的临界点的一个方法,与微积分差异的地方在于,泛函的定义域为函数空间而不是 , ]上的实值函数满足() = 与() = ,并且沿着所定义的曲线的道路长度最短。
被积函数为
的偏导数为
以及
把上面两式代入欧拉-拉格朗日方程,可以得到
也就是说,该函数的一阶导数必须为常值,因此其图像为直线。
欧拉-拉格朗日方程(英语:Euler-Lagrange equation)为变分法中的一条重要方程。它是一个二阶偏微分方程。它提供了求泛函的临界值(平稳值)函数,换句话说也就是求此泛函在其定义域的临界点的一个方法,与微积分差异的地方在于,泛函的定义域为函数空间而不是 , ]上的实值函数满足() = 与() = ,并且沿着所定义的曲线的道路长度最短。
被积函数为
的偏导数为
以及
把上面两式代入欧拉-拉格朗日方程,可以得到
也就是说,该函数的一阶导数必须为常值,因此其图像为直线。