C++/CLI

✍ dations ◷ 2025-04-04 06:45:17 #C++/CLI

C++/CLI(CLI: Common Language Infrastructure)在计算机语言中是一门由微软设计,用来代替C++托管扩展(Managed C++,下文使用MC++指代)的语言。这门语言在兼容原有的C++标准的同时,重新简化了托管代码扩展的语法,提供了更好的代码可读性。和微软.NET的其他语言一样,微软向ECMA提交了C++/CLI的标准化请求,并且被ECMA通过成为正式的标准。C++/CLI现在可以被Visual C++ 2005和更高版本的编译器支持。C++/CLI的部分特性已经申请了专利。

C++/CLI是一门独立的语言(比如新的关键字),而不是像C++托管扩展一样是C++的超集。(C++托管扩展有一些不标准的关键字如__gc和__value)。所以,C++/CLI对于这些语法有较大的改变,尤其是去除了一些意义不明确的关键字,增加了一些对.NET的特性的语言级别的支持。

有歧义的语法,像MC++的不同版本用新的操作符gcnew区分:在C++/CLI,.NET引用类型的创建需要要使用新的关键字gcnew,以和本地类型区分开。C++/CLI增加了新的泛型概念(书写方式与C++的模板相似,但行为有很大的测试区别)。

回到MC++,有两类指针:用__nogc标识的指针是传统意义上的C++指针,而用__gc标识的指针为.NET中的引用。但在C++/CLI里,唯一的指针就是传统意义上的C++指针,而.NET引用类型使用一个“句柄”来获取,使用新的语法“类名^”代替了MC++的“类名*”。新的句法使得托管和非托管代码混合开发更加方便;它指明了对象将会被垃圾回收器自动销毁还是手动销毁。

范例代码:

 // C++托管扩展 #using <mscorlib.dll> using namespace System::Collections; __gc class referencetype { protected:     String* stringVar;     int intArr __gc;     ArrayList* doubleList; public:     referencetype(String* str,int* pointer,int number) // 哪个是托管的?     {         doubleList = new ArrayList();         System::Console::WriteLine(str->Trim() + number.ToString());     } };
 // C++/CLI #using <mscorlib.dll> using namespace System::Collections::Generic; ref class referencetype { protected:     String^ stringVar;     array<int> intArr;     List<double>^ doubleList; public:     referencetype(String^ str,int* pointer,int number) // 不会再分不清了吧?     {         doubleList = gcnew List<double>();         System::Console::WriteLine(str->Trim() + number);     } };

托管类型的定义

在CLR中,托管类型是分为引用类型(class)和值类型(struct)的,在C++/CLI中的分别定义方式如下:

引用类型:

   public ref class MyClass   {   };

值类型:

   public value class MyClass   {   }; 

数组

数组现在需要用cli名字空间内的array类声明,语法和STL的vector类似。

C++/CLI中新增了array<T> ^的方式定义数组。

   array<int> ^a = gcnew array<int>(100) { 1, 2, 3 };

或者使用它的完整版:

   cli::array<int> ^a = gcnew cli::array<int> {1, 2, 3}; 

System::String

 #include <string>    using namespace std;    using namespace System;    using namespace System::Runtime::InteropServices;    string cast_to_string(String^ str)    {        IntPtr ip = Marshal::StringToHGlobalAnsi(str);        const char* ch = static_cast<const char*>(ip.ToPointer());        string stdStr = ch;        Marshal::FreeHGlobal(ip);        return stdStr;    }

不定参数

对于C#中的不定参数的语法:

   void foo(params string args)

在C++/CLI中对应的版本为:

   void foo(... array<String^>^ args) 

跟踪引用(Tracking reference)

C++/CLI里的一个“跟踪引用”也是一个句柄,但它是传地址而不是传值。等同于在C#中加了“ref”关键字,或Visual Basic .NET的“ByRef”。C++/CLI使用“^%”语法来定义一个跟踪引用。与传统C++中的“*&”语法相似。

下面的示例了“跟踪引用”的使用。如果把“^%”改成“^”(也就是使用普通的句柄),10个字符串将不会被修改,而只会生成那些字符串的副本,这些都是因为那些引用已经不是传地址而是传值。

 int main() {     array<String^>^ arr = gcnew array<String^>(10);     int i = 0;      for each(String^% s in arr)         s = gcnew String(i++.ToString());      return 0; }

上面的代码示例了用户如何用C++/CLI做一些其他.NET语言不能做的事情,比如C#就不允许在foreach循环中这样做。例如foreach(ref string s in arr)在C#中是非法的。

C++/CLI的另一个变化就是使用“!类名()”来声明一个托管类型的“析构方法”(在垃圾回收器回收对象之前的不确定的时间由CLR调用),而原来的“~类名()”是用来定义“传统的析构函数”(能被用户自己调用)。另外,下面的例子说明了如何在C++/CLI中托管对象如何自动调用“传统析构函数”。

在一个典型的.NET程序中(例如直接使用CLI)编程,可以由用户自己调用的“解构方法”是用实现IDisposable接口,通过编写Dispose方法来实现显式释放资源;而不确定的“解构方法”是通过重载Finalize函数来实现的。

 // C++/CLI ref class MyClass // :IDisposable (编译器自动实现IDisposable接口) { public:     MyClass();  // 建构函数     ~MyClass(); // (确定的) 析构函数 (编译器使用IDisposable.Dispose来实现) protected:     !MyClass(); // 解构方法 (不确定的) (编译器通过重载virtual void Finalize来实现)  public:     static void Test()     {         MyClass _auto; // 这不是个控制代碼,它将调用MyClass的默认建構函数         // 使用_auto对象          // 函数返回前自动调用_auto的析构函数(IDisposable.Dispose,由~MyClass()定义)来释放资源          // 以上代码等效于:           MyClass^ user = gcnew MyClass();          try  {  /* 使用_auto对象 */ }          finally  {  delete user; /* 由编译器调用_auto.Dispose() */ }      } };
 // C# class MyClass : IDisposable {     public MyClass() {} // 构造函数     ~MyClass() {} // 析构方法 (不确定的) (编译器通过重载virtual void Finalize来实现),与C++/CLI的!MyClass()等效     public void Dispose() {} // Dispose方法      public static void Test()     {         using(MyClass auto = new MyClass())           { /* 使用auto对象 */ }         // 因为使用了using句法,编译器自动调用auto.Dispose()          // 以上代码等效于:          MyClass user = new MyClass();         try { /* 使用user对象 */ }         finally { user.Dispose(); }     } }

引用和参考

  1. ^ ECMA 372. . (原始内容存档于2008-08-10). 
  2. ^ 2.0 2.1 2.2 2.3 转换指南: 将程序从托管扩展 C++ 迁移到 C++/CLI. . (原始内容存档于2009-01-22). 

外部链接

相关