神算 (2013年)

✍ dations ◷ 2025-08-24 03:22:48 #神算 (2013年)

《神算》是公共电视文化事业基金会《公视学生剧展》一部作品,描述了一位通灵女孩的生活故事。

陈和榆在看到一篇登载于台湾苹果日报的访谈报导后,以其为基底开始发想关于灵媒的故事情节。后来,陈和榆访问了前述报导中的受访者刘柏君,并前往拜访许多通灵人士与相关人物,深入研究宫庙文化与其信徒之间的互动关系。

谢君雅是个热爱垒球的高中学生,她因天生可以感知鬼魂与神灵而与道场产生缘分;在道场里,她希望借着修行改善个人困扰,但是,她更常因通灵能力而遭受信众求问与崇拜。更糟的是,她因为灵媒工作而无法专心练习垒球,也失去和同学在放学后互动的机会。

2011年,陈和榆以研究搜集所得之资讯与个人发想编写并导演了一部30分钟短片《神算》;他将该短片投稿参加《公视学生剧展》,并在获选后于2013年首度放映于公视主频。

相关

  • 范妮·罗·哈默尔芬妮·露·哈默(英语:Fannie Lou Hamer,1917年10月6日-1977年3月14日),美国黑人选举权维权人士,非裔美国人民权运动家和活跃于密西西比州的慈善家。她对于密西西比州自由之夏有着举
  • 洞新高速公路洞新高速公路(湖南洞口县至新宁县高速公路),为湖南(邵阳)连接广西(桂林)重要高速通道,全线位于邵阳市辖域内。公路北起沪昆高速邵怀段洞口县大水互通,南止于广西资源县与湖南新宁县交
  • 新亭车辆基地新亭车辆基地(朝鲜语:신정차량사업소/新亭車輛事業所  */?)是首尔交通公社位于首尔阳川区的一个车辆段,在首尔地铁2号线新亭支线附近。这个车辆段主要用于首尔地铁2号线的2000
  • 伊戈尔·多东伊果尔·多东(摩尔多瓦语:Igor Dodon;1975年2月18日-),现任摩尔多瓦总统和摩尔多瓦共和国社会主义者党主席,2006年9月到2009年9月曾任经济部长,2008年兼任副总理。2016年10月参加摩
  • 蟒鳗蟒鳗,又称血红拟蛇鱼,为辐鳍鱼纲鳗鲡目异蝮鯙科的其中一个种。本鱼分布于中西大西洋,包括古巴、波多黎各、西印度群岛、苏里南等海域发现。水深12至55米。本鱼体长体高的20倍,头
  • 芬兰文学芬兰文学指的是在芬兰创作的文学。在欧洲中世纪早期,最早记录芬兰语支一种语言的文字记录是在大诺夫哥罗德发现的源于十三世纪早期的桦树树皮信件第292号(英语:Birch bark lett
  • 权力的游戏:征服与反抗权力的游戏:征服与反抗(又名:权力的游戏:征服与叛乱,英语:Game of Thrones:Conquest and Rebellion)是由美国有线电视网络媒体公司HBO出品的动画短片,2017年12月14日在美国上映,时长
  • 彼得一世 (塞浦路斯)塞浦路斯的彼得一世(英语:Peter I of Cyprus,1328年10月9日-1369年1月17日),塞浦路斯国王,1358年至1369年在位。1353年,彼得与亚拉冈国王海梅二世的孙女莱昂诺尔(英语:Eleanor of Arag
  • 神龙 (龙珠) 神龙是日本漫画作品《龙珠》的虚拟角色。当有人凑齐七颗龙珠后喊出“出来吧,神龙!”,神龙就会出现并帮助人们实现愿望。 地球上的龙珠召唤出来的神龙,初期一次只能实现一个愿
  • 强连通分量强连通分量(英语:Strongly connected component)是图论中的概念。图论中,强连通图指每一个顶点皆可以经由该图上的边抵达其他的每一个点的有向图。意即对于此图上每一个点对(Va,Vb),皆存在路径Va→Vb以及Vb→Va。强连通分量则是指一张有向图G的极大强连通子图G'。如果将每一个强连通分量缩成一个点,则原图G将会变成一张有向无环图。一张图被称为有向无环图当且仅当此图不具有点集合数量大于一的强连通分量,因为有向环即是一个强连通分量,而且任何的强连通分量皆具有至少一个有向环。Kosa