首页 >
涡度
✍ dations ◷ 2025-08-17 08:05:49 #涡度
涡量,也称为涡度,是一个流体力学的概念,用以描述流体的旋转情况。数学上,涡度
ζ
{displaystyle zeta }
是描述速度场
v
→
{displaystyle {vec {v}}}
的旋度,是一个向量场。在气象学之中所考虑的流体就是大气,实际上通常就仅考虑涡度的铅直分量;另外,由于大气的速度场是以静止地球为参考坐标,故亦称为相对涡度。当气团的相对涡度为正值时,表示该气团出现逆时针转动;反之,相对涡度负值则为顺时针转动。如果把地球转动都一并考虑的话,涡度就被称为绝对涡度;而绝对涡度与大气厚度的乘积一般而言为常数。由环量定义以及斯托克斯定理,流体中的涡度
ζ
{displaystyle zeta }
与环量
Γ
{displaystyle Gamma }
有以下关系:以微分形式表示,亦即涡度相当于每单位面积所具有的环量:对于二维流体而言,其涡度向量垂直于流体平面。而若有一流体绕着一个轴心刚体旋动的话,则其涡度值为角速度之两倍;故对这样的流体而言,若涡度值为零的话则必为非旋转流体。但是,非旋转流体仍然可以具有非零值的角速度,如一绕着轴心绕转时、其切线速度刚好正比于流体与轴心距离之倒数的流体,其涡度为零。形象化表示:若在流场之内加入一微小固体于其中,该固体除了顺着流线移动之外、亦会转动的话,则该流场的涡度值非零(如右图)。普遍而言,对黏度低(雷诺数较高)的流体来说,涡度是个相当有用的物理量。在这些情况下,无论速度场有多复杂,除了一小部分空间外、涡度场均可较准地近似为零。这个近似法对二维无黏性的流体而言是正确的,皆因这样的流体之流线场可以透过复分析而解得。对于任何流体,涡度场亦可以透过解与有关速度的方程式之旋度而求得。假若流体是不可压缩的话(马赫数较低),考卢力平衡则可得出下列方程式:其中:即使就真实流体而言,涡度仍然是相当有用的物理量:例如可以透过涡度可以把无黏性流体模型微扰至真实流体。另外,流体的黏性会使涡度从原先的细小区域扩散开去;对于黏度高的流体,其涡度几乎会扩散至整个流体而使得其涡度场非常复杂。与涡度相关的物理量有涡旋曲线,这些曲线的每一点均相切于该点的涡度;而涡旋管则是由通过一封闭曲线上每一点的涡旋曲线所组成的封闭面。涡旋管的强度就是通过该面的涡度量积分;由于涡度之散度为零,故涡旋管强度在管上各处相等。根据赫尔姆霍茨定理,无黏性流体之涡旋管强度亦不随着时间而改变(黏度会令流体出现摩擦损耗因而随时间改变)。另外,就三维流体而言,延长涡旋曲线可导致流体总涡度增加,亦即所谓的涡旋伸展。在浴缸去水口出现的涡旋、以致龙卷风的形成等都是实际例子。透过纳维-斯托克斯方程可以找到流体速度,其方程式为:展开速度的物质导数并找出旋度,则涡度的物质导数可以写成:其中:在气象学应用之中,涡度是用来描述气流相对于地面之水平方向旋转的物理量,其方向可以由右手定则来得知:若气流以逆时针转动则涡度指离地面、顺时针转则指向地面。是故,在北半球的气旋之涡度值为正、反气旋为负;而在南半球,则气旋为负、反气旋为正。涡度的数学表达式可以写成其中:一般而言,上述表达式所指的是相对涡度;而在同一点中的绝对涡度则可藉加上科里奥利量而求得,亦即为地球本身的涡度与空气相对于地球涡度之总和。科里奥利量只与纬度相关,其数学表达式则为
f
=
2
Ω
sin
θ
{displaystyle f=2Omega sin theta }
。一个常用的相关物理量为位涡度。绝对涡度本身会随着所在地点空气柱高度之变化而改变;但如果将绝对涡度除以空气柱的高度的话,对于绝热流而言则可得出一常量(即位涡度)。以数学表达式示之:其中:中纬度的罗士比波是位涡度守恒的一个例子。空气向南移动时,当科里奥利量减弱到一定程度时,为保持守恒则相对涡度增加,随之然气流作逆时针转动,最终转向北移动;而当科里奥利里增加到一定程度时,基于守恒相对涡度随之下际并使气流作顺时针转动,并最终转向南移动。这个过程不断重复,而形成一个个向西传递的波动。这样的波动就被称为罗士比波。
相关
- 大气压力气压的国际单位制是帕斯卡(或简称帕,符号是Pa),泛指是气体对某一点施加的流体静力压强,来源是大气层中空气的重力,即为单位面积上的大气压力。在一般气象学中人们用千帕斯卡(KPa)、
- 叶尼塞语系叶尼塞语系(Yeniseic 或 Yenisei-Ostyak)是分布在西伯利亚中部叶尼塞河流域的一个语族。包括7种语言:其中的Yug、Pumpokol、Arin和Assan早在18世纪消亡了,我们对这些语言所知甚
- 粉尘爆炸粉尘燃烧(英语:Dust explosion)指悬浮在封闭或局限空间中,或户外环境的可燃粉尘颗粒快速燃烧,如果在封闭环境中,可燃颗粒或局限在大气或是氧分子等其他合适的气体介质中分散浓度足
- 战神一号战神一号运载火箭(Ares I)是美国国家航空航天局在星座计划(Project Constellation)中所所研制的载人运载火箭(CLV),其名字源自于希腊神话中的战神阿瑞斯。按原计划,美国国家航空航天
- 同素异形体同素异形体,是指由同一种化学元素构成,而结构形态却不相同的单质。同素异形体由于结构不同,物理性质与化学性质上也有差异。同素异形体这一术语针对的是单质,而非化合物,更一般的
- FeCsub4/subHsub2/subOsub4/sub延胡索酸亚铁(英语:Iron(II) fumarate,亦称为富马酸亚铁、富血铁、反丁烯二酸亚铁)是延胡索酸对应的铁的化合物,外观为红橙色粉末。过去曾作为膳食补充剂使用,用于补铁。化学式为C
- 达梭航天达索航空是法国的一家军用航空和商用机制造商,附属于达索集团。在1929年由马歇尔·布洛契(Marcel Bloch)建立,第二次世界大战后马歇尔布洛契改名成马歇尔·达索(英语:Marcel Dassa
- 维亚切斯拉夫·维克多洛维奇·沃洛金维亚切斯拉夫·维克多洛维奇·沃洛金(俄语:Вячесла́в Ви́кторович Воло́дин,1964年2月4日-)是自2016年10月5日起担任第10任国家杜马主席(英语:Chairma
- 约翰·亚当斯约翰·亚当斯(英语:John Adams,1735年10月30日-1826年7月4日),马萨诸塞州人,律师出身,美国政治家。曾经参与独立宣言的共同签署,被美国人视为其中一位开国元勋。并在1789年-1797年间,出
- 汤普森本杰明·汤普森爵士,伦福德伯爵,FRS (英语:Sir Benjamin Thompson, Count Rumford , 德语:Reichsgraf von Rumford,1753年3月26日-1814年8月21日),英国物理学家,生于英属美洲。他对于热