涡度

✍ dations ◷ 2025-09-06 20:41:54 #涡度
涡量,也称为涡度,是一个流体力学的概念,用以描述流体的旋转情况。数学上,涡度 ζ {displaystyle zeta } 是描述速度场 v → {displaystyle {vec {v}}} 的旋度,是一个向量场。在气象学之中所考虑的流体就是大气,实际上通常就仅考虑涡度的铅直分量;另外,由于大气的速度场是以静止地球为参考坐标,故亦称为相对涡度。当气团的相对涡度为正值时,表示该气团出现逆时针转动;反之,相对涡度负值则为顺时针转动。如果把地球转动都一并考虑的话,涡度就被称为绝对涡度;而绝对涡度与大气厚度的乘积一般而言为常数。由环量定义以及斯托克斯定理,流体中的涡度 ζ {displaystyle zeta } 与环量 Γ {displaystyle Gamma } 有以下关系:以微分形式表示,亦即涡度相当于每单位面积所具有的环量:对于二维流体而言,其涡度向量垂直于流体平面。而若有一流体绕着一个轴心刚体旋动的话,则其涡度值为角速度之两倍;故对这样的流体而言,若涡度值为零的话则必为非旋转流体。但是,非旋转流体仍然可以具有非零值的角速度,如一绕着轴心绕转时、其切线速度刚好正比于流体与轴心距离之倒数的流体,其涡度为零。形象化表示:若在流场之内加入一微小固体于其中,该固体除了顺着流线移动之外、亦会转动的话,则该流场的涡度值非零(如右图)。普遍而言,对黏度低(雷诺数较高)的流体来说,涡度是个相当有用的物理量。在这些情况下,无论速度场有多复杂,除了一小部分空间外、涡度场均可较准地近似为零。这个近似法对二维无黏性的流体而言是正确的,皆因这样的流体之流线场可以透过复分析而解得。对于任何流体,涡度场亦可以透过解与有关速度的方程式之旋度而求得。假若流体是不可压缩的话(马赫数较低),考卢力平衡则可得出下列方程式:其中:即使就真实流体而言,涡度仍然是相当有用的物理量:例如可以透过涡度可以把无黏性流体模型微扰至真实流体。另外,流体的黏性会使涡度从原先的细小区域扩散开去;对于黏度高的流体,其涡度几乎会扩散至整个流体而使得其涡度场非常复杂。与涡度相关的物理量有涡旋曲线,这些曲线的每一点均相切于该点的涡度;而涡旋管则是由通过一封闭曲线上每一点的涡旋曲线所组成的封闭面。涡旋管的强度就是通过该面的涡度量积分;由于涡度之散度为零,故涡旋管强度在管上各处相等。根据赫尔姆霍茨定理,无黏性流体之涡旋管强度亦不随着时间而改变(黏度会令流体出现摩擦损耗因而随时间改变)。另外,就三维流体而言,延长涡旋曲线可导致流体总涡度增加,亦即所谓的涡旋伸展。在浴缸去水口出现的涡旋、以致龙卷风的形成等都是实际例子。透过纳维-斯托克斯方程可以找到流体速度,其方程式为:展开速度的物质导数并找出旋度,则涡度的物质导数可以写成:其中:在气象学应用之中,涡度是用来描述气流相对于地面之水平方向旋转的物理量,其方向可以由右手定则来得知:若气流以逆时针转动则涡度指离地面、顺时针转则指向地面。是故,在北半球的气旋之涡度值为正、反气旋为负;而在南半球,则气旋为负、反气旋为正。涡度的数学表达式可以写成其中:一般而言,上述表达式所指的是相对涡度;而在同一点中的绝对涡度则可藉加上科里奥利量而求得,亦即为地球本身的涡度与空气相对于地球涡度之总和。科里奥利量只与纬度相关,其数学表达式则为 f = 2 Ω sin ⁡ θ {displaystyle f=2Omega sin theta } 。一个常用的相关物理量为位涡度。绝对涡度本身会随着所在地点空气柱高度之变化而改变;但如果将绝对涡度除以空气柱的高度的话,对于绝热流而言则可得出一常量(即位涡度)。以数学表达式示之:其中:中纬度的罗士比波是位涡度守恒的一个例子。空气向南移动时,当科里奥利量减弱到一定程度时,为保持守恒则相对涡度增加,随之然气流作逆时针转动,最终转向北移动;而当科里奥利里增加到一定程度时,基于守恒相对涡度随之下际并使气流作顺时针转动,并最终转向南移动。这个过程不断重复,而形成一个个向西传递的波动。这样的波动就被称为罗士比波。

相关

  • 生物化学生物化学(英语:biochemistry,也作 biological chemistry),顾名思义是研究生物体中的化学进程的一门学科,常常被简称为生化。它主要用于研究细胞内各组分,如蛋白质、糖类、脂类、核
  • 座囊菌纲参见内文座囊菌纲(学名:Dothideomycetes)是子囊菌门盘菌亚门下的一纲,共包含11个目、90个科、1300个属及超过19000个种。传统上本纲的大多数真菌都被算作腔菌(loculoascomycetes),
  • 直泳动物门直泳动物门(学名:Orthonectida)是由所知甚少的海底无脊椎动物寄生虫所组成的一个小门,是最简单的多细胞生物之一。寄生的生物有扁形动物、多毛纲的虫、双壳纲的软体动物和棘皮动
  • 主动脉主动脉(希腊语:αορτή)是一大血管,体循环动脉系统的起始主干,它发自左心室。主动脉是身体最大的动脉,直径有2.5-3.5 cm。形如拐杖,弓形开端,向下直到骨盆区。在解剖学、外科学上
  • 肉豆蔻酸肉豆蔻酸(Myristic acid),又称为十四(烷)酸,是一种饱和脂肪酸。它的分子式是C13H27COOH,简写为C14H28O2。肉豆蔻酸具有和其他羧酸相似的化学性质,比如可以和氢氧化钠反应:肉豆蔻酸对
  • 中太古代中太古代是太古宙的第三个代,前一个是古太古代,后一个是新太古代,时间介于32~28亿年之间。这一段时期是以计时学定义,而非地球的特定岩层。在澳洲的化石纪录显示叠层石在这个年
  • 虫部,為漢字索引中的部首之一,康熙字典214個部首中的第一百四十二個(六劃的則為第二十五個)。就繁體和簡體中文中,虫部歸於六劃部首。虫部通常以左、右、下方為部字。且無其他部
  • 法国国庆日巴士底日,又称法国国庆日(法语:Fête nationale française),定于每年的7月14日,以纪念在1789年7月14日巴黎群众攻克了象征封建统治的巴士底狱,从而揭开法国大革命序幕。1789年7月1
  • 安妮安妮(英语:Anne,又译为安;1665年2月6日-1714年8月1日),通称安妮女王(Queen Anne),1702年3月8日起成为英格兰、苏格兰和爱尔兰女王。1707年3月1日,英苏《联合法令》正式生效,英格兰和苏格
  • span style=color:black;石勒苏益格-荷尔斯泰因/span石勒苏益格-荷尔斯泰因(德语:Schleswig-Holstein;丹麦语:Slesvig-Holsten;低地德语:Sleswig-Holsteen;北弗里斯兰语:Slaswik-Holstiinj)是德国16个州中最北面的一个州。这个州是在第