数据采矿

✍ dations ◷ 2025-04-04 11:10:52 #数据采矿
数据挖掘(英语:data mining)是一个跨学科的计算机科学分支 。它是用人工智能、机器学习、统计学和数据库的交叉方法在相对较大型的数据集(英语:data set)中发现模式的计算过程。数据挖掘过程的总体目标是从一个数据集中提取信息,并将其转换成可理解的结构,以进一步使用。除了原始分析步骤,它还涉及到数据库和数据管理方面、数据预处理(英语:data pre-processing)、模型与推断方面考量、兴趣度度量、复杂度的考虑,以及发现结构、可视化及在线更新等后处理。数据挖掘是“数据库知识发现”(Knowledge-Discovery in Databases,KDD)的分析步骤 ,本质上属于机器学习的范畴。类似词语“数据捕捞(英语:data dredging)”、“数据捕鱼”和“数据探测”指用数据挖掘方法来采样(可能)过小以致无法可靠地统计推断出所发现任何模式的有效性的更大总体数据集的部分。不过这些方法可以创建新的假设来检验更大数据总体。数据捕捞是因为海量有用数据快速增长的产物。使用计算机进行历史数据分析,1960年代数字方式采集数据已经实现。1980年代,关系数据库随着能够适应动态按需分析数据的结构化查询语言发展起来。数据仓库开始用来存储大量的数据。因为面临处理数据库中大量数据的挑战,于是数据捕捞应运而生,对于这些问题,它的主要方法是数据统计分析和人工智能搜索技术。数据捕捞有以下这些不同的定义:尽管通常数据捕捞应用于数据分析,但是像人工智能一样,它也是一个具有丰富含义的词汇,可用于不同的领域。 它与KDD(Knowledge discovery in databases)的关系是:KDD是从数据中辨别有效的、新颖的、潜在有用的、最终可理解的模式的过程;而数据挖掘是KDD通过特定的算法在可接受的计算效率限制内生成特定模式的一个步骤。 事实上,在现今的文献中,这两个术语经常不加区分的使用。数据挖掘本质上属于机器学习的内容。例如《数据挖掘:实用机器学习技术及Java实现》一书大部分是机器学习的内容。这本书最初只叫做“实用机器学习”,“数据挖掘”一词是后来为了营销才加入的。通常情况下,使用更为正式的术语,(大规模)数据分析和分析学,或者指出实际的研究方法(例如人工智能和机器学习)会更准确一些。数据挖掘的实际工作是对大规模数据进行自动或半自动的分析,以提取过去未知的有价值的潜在信息,例如数据的分组(通过聚类分析)、数据的异常记录(通过异常检测)和数据之间的关系(通过关联式规则挖掘)。这通常涉及到数据库技术,例如空间索引(英语:spatial index)。这些潜在信息可通过对输入数据处理之后的总结来呈现,之后可以用于进一步分析,比如机器学习和预测分析。举个例子,进行数据挖掘操作时可能要把数据分成多组,然后可以使用决策支持系统以获得更加精确的预测结果。不过数据收集、数据预处理、结果解释和撰写报告都不算数据挖掘的步骤,但是它们确实属于“数据库知识发现”(KDD)过程,只不过是一些额外的环节。数据库知识发现(KDD)过程通常定义为以下阶段:在运用数据挖掘算法之前,必须收集目标数据集。由于数据挖掘只能发现实际存在于数据中的模式,目标数据集必须大到足以包含这些模式,而其余的足够简洁以在一个可接受的时间范围内挖掘。常见的数据源如数据超市或数据仓库。在数据挖掘之前,有必要预处理来分析多变量数据。然后要清理目标集。数据清理移除包含噪声和含有缺失数据的观测量。数据挖掘涉及六类常见的任务:数据挖掘的价值一般带着一定的目的,而这目的是否得到实现一般可以通过结果验证来实现。验证是指“通过提供客观证据对规定要求已得到满足的认定”,而这个“认定”活动的策划、实施和完成,与“规定要求”的内容紧密相关。数据挖掘过程中的数据验证的“规定要求”的设定,往往与数据挖掘要达到的基本目标、过程目标和最终目标有关。验证的结果可能是“规定要求”得到完全满足,或者完全没有得到满足,以及其他介于两者之间的满足程度的状况。验证可以由数据挖掘的人自己完成,也可以通过其他人参与或完全通过他人的项目,以与数据挖掘者毫无关联的方式进行验证。一般验证过程中,数据挖掘者是不可能不参与的,但对于认定过程中的客观证据的收集、认定的评估等过程如果通过与验证提出者无关的人来实现,往往更具有客观性。通过结果验证,数据挖掘者可以得到对自己所挖掘的数据价值高低的评估。与数据捕捞有关的,还牵扯到隐私问题,例如:一个雇主可以透过访问医疗记录来筛选出那些有糖尿病或者严重心脏病的人,从而意图削减保险支出。然而,这种做法会导致伦理和法律问题。对于政府和商业数据的挖掘,可能会涉及到的,是国家安全或者商业机密之类的问题。这对于保密也是个不小的挑战。数据捕捞有很多合法的用途,例如可以在患者群的数据库中查出某药物和其副作用的关系。这种关系可能在1000人中也不会出现一例,但药物学相关的项目就可以运用此方法减少对药物有不良反应的病人数量,还有可能挽救生命;但这当中还是存在着数据库可能被滥用的问题。数据捕捞实现了用其他方法不可能实现的方法来发现信息,但它必须受到规范,应当在适当的说明下使用。如果数据是收集自特定的个人,那么就会出现一些涉及保密、法律和伦理的问题。2018年5月25日,欧盟一般数据保护规范(General Data Protection Regulation,GDPR)正式上路,保障个人数据搜集的同意权与删除要求,在进入网站时会进行个人数据搜集、处理及利用之告知,并在当事人同意之下做搜集。数据挖掘的方法包括监督式学习、非监督式学习、半监督学习、增强学习。监督式学习包括:分类、估计、预测。非监督式学习包括:聚类,关联规则分析。数据挖掘在零售行业中的应用:零售公司跟踪客户的购买情况,发现某个客户购买了大量的真丝衬衣,这时数据捕捞系统就在此客户和真丝衬衣之间创建关系。销售部门就会看到此信息,直接发送真丝衬衣的当前行情,以及所有关于真丝衬衫的资料发给该客户。这样零售商店通过数据捕捞系统就发现了以前未知的关于客户的新信息,并且扩大经营范围。通常作为与数据仓库和分析相关的技术,数据捕捞处于它们的中间。然而,有时还会出现十分可笑的应用,例如发掘出不存在但看起来振奋人心的模式(特别的因果关系),这些根本不相关的、甚至引人误入歧途的、或是毫无价值的关系,在统计学文献里通常被戏称为“数据挖泥”(Data dredging, data fishing, or data snooping)。数据捕捞意味着扫描可能存在任何关系的数据,然后筛选出符合的模式,(这也叫作“过度匹配模式”)。大量的数据集中总会有碰巧或特定的数据,有着“令人振奋的关系”。因此,一些结论看上去十分令人怀疑。尽管如此,一些探索性数据分析 还是需要应用统计分析查找数据,所以好的统计方法和数据数据的界限并不是很清晰。更危险是出现根本不存在的关系性。投资分析家似乎最容易犯这种错误。在一本叫做《顾客的游艇在哪里?》的书中写道:“总是有相当数量的可怜人,忙于从上千次的赌轮盘的轮子上查找可能的重复模式。十分不幸的是,他们通常会找到。”多数的数据捕捞研究都关注于发现大量的数据集中,一个高度详细的模式。在《大忙人的数据捕捞》一书中, 西弗吉尼亚大学和不列颠哥伦比亚大学研究者讨论了一个交替模式,用来发现一个数据集当中两个元素的最小区别,它的目标是发现一个更简单的模式来描述相关数据。数据挖掘是关于分析数据的;有关从数据中提取信息的信息,参见:

相关

  • 离子化合物离子化合物,是由阴离子(Anion,带负电)和阳离子(Cation,带正电)组成,以本质上是库仑力的离子键相结合的化合物。离子化合物通常熔点和沸点较高,熔融时或电离产生其组成离子的水溶液中
  • 单倍群O-M175单倍群O-M175(英语:Haplogroup O-M175)是人类Y染色体DNA单倍群之一,主要分布于东亚与东南亚,源于单倍群NO。单倍群O首次出现于距今约3万年前,出现地为东南亚或东亚,是单倍群NO-M214
  • 最小对立体最小对立体(minimal pair)在音韵学中,指的是在某个语言中一对字词,这对字词的音韵元素,例如语音、音位、声调、时位(chroneme),只有一处相异,而有不同的词意。这个概念可以用来说明某
  • 互助旅游互助旅游(或称交换游、住宿交换、互助游),是通过互相帮助、交换进行的旅游方式。参与互助旅游的一方(主人)可向另一方(客人)提供住宿或招待,以尽地主之谊。互助旅游用以节省旅费,更可
  • 大卫·菲利浦埃尔斯米尔的菲利普斯男爵大卫·奇尔顿·菲利浦斯,KBE,FRS(英语:David Chilton Phillips, Baron Phillips of Ellesmere,1924年3月7日-1999年2月23日),英国结构生物学家,在学界和政界
  • 色部,为汉字索引中的部首之一,康熙字典214个部首中的第一百三十九个(六划的则为第二十二个)。就繁体和简体中文中,色部归于六划部首。色部只以右方为部字。且无其他部首可用者将
  • 松柏松柏目(学名:Pinales)在生物分类学上是松柏纲中的一个目,传统分类上的裸子植物门包括五个纲(松柏纲、苏铁纲、银杏纲、买麻藤纲、红豆杉纲)。现因此五支裸子植物并非单系群,而将其
  • 十五第八第十埃及第十五王朝是古埃及历史上的一个王朝,为西克索人所立,定都于阿瓦里斯。本王朝存在时间从前1674年至前1535年,属于第二中间期。现今人们常将其和第十六王朝与埃及第
  • 联合国机构联合国系统是对联合国及其关联机构的总称,其中部分机构在联合国成立前就已存在。包括:联合国主要基于6个主要组成部分:除了独立的组织外,联合国的各机构还经常下设机构负责专门
  • 易北河易北河(德语:Elbe)在捷克语和波兰语中称为“拉贝河”(Labe,Łaba),都是由古斯堪的纳维亚语的“河流”一词演变来的。易北河发源于捷克和波兰交接的苏台德山脉,向南进入捷克,再流成一