四维矢量

✍ dations ◷ 2024-09-20 16:47:18 #力学,闵可夫斯基时空,相对论,基本物理概念,物理量

在相对论里,四维矢量(four-vector)是实值四维矢量空间里的矢量。这四维矢量空间称为闵可夫斯基时空。四维矢量的分量分别为在某个时间点与三维空间点的四个数量。在闵可夫斯基时空内的任何一点,都代表一个“事件”,可以用四维矢量表示。从任意惯性参考系观察某事件所获得的四维矢量,通过洛伦兹变换,可以变换为从其它惯性参考系观察该事件所获得的四维矢量。

本文章只思考在狭义相对论范围内的四维矢量,尽管四维矢量的概念延伸至广义相对论。在本文章内写出的一些结果,必须加以修改,才能在广义相对论范围内成立。

在闵可夫斯基时空内的任何一点,都可以用四维矢量(一组标准基底的四个坐标) x μ = ( x 0 , x 1 , x 2 , x 3 ) {\displaystyle {x}^{\mu }=({x}^{0},\,{x}^{1},\,{x}^{2},\,{x}^{3})} 来表示;其中,上标 μ = 0 , 1 , 2 , 3 {\displaystyle \mu =0,\,1,\,2,\,3} 标记时空的维数次序。称这四维矢量为“坐标四维矢量”,又称“四维坐标”,定义为

其中, c {\displaystyle c} 是光速, t {\displaystyle t} 是时间, ( x , y , z ) {\displaystyle (x,\,y,\,z)} 是位置的三维直角坐标。

为了确使每一个坐标的单位都是长度单位,定义 x 0   = d e f   c t {\displaystyle {x}^{0}\ {\stackrel {def}{=}}\ ct}

“四维位移”定义为两个事件之间的矢量差。在时空图里,四维位移可以用从第一个事件指到第二个事件的箭矢来表示。当矢量的尾部是坐标系的原点时,位移就是位置。四维位移 Δ x μ {\displaystyle \Delta {x}^{\mu }} 表示为

带有上标的四维矢量 U μ {\displaystyle {U}^{\mu }} 称为反变矢量,其分量标记为

假若,标号是下标,则称四维矢量 U μ {\displaystyle {U}_{\mu }} 为协变矢量。其分量标记为

在这里,闵可夫斯基度规 η μ ν {\displaystyle \eta _{\mu \nu }} 被设定为

采用爱因斯坦求和约定,则四维矢量的协变坐标和反变坐标之间的关系为

闵可夫斯基度规与它的“共轭度规张量” η μ ν {\displaystyle \eta ^{\mu \nu }} 相等:

给予两个惯性参考系 S {\displaystyle {\mathcal {S}}} S ¯ {\displaystyle {\bar {\mathcal {S}}}} ;相对于参考系 S {\displaystyle {\mathcal {S}}} ,参考系 S ¯ {\displaystyle {\bar {\mathcal {S}}}} 以速度 v = v x ^ {\displaystyle \mathbf {v} =v{\hat {\mathbf {x} }}} 移动。对于这两个参考系,相关的“洛伦兹变换矩阵” Λ μ ν {\displaystyle \Lambda ^{\mu }{}_{\nu }}

其中, γ = 1 1 ( v c ) 2 {\displaystyle \gamma ={\cfrac {1}{\sqrt {1-\left({\frac {v}{c}}\right)^{2}}}}} 是洛伦兹因子, β = v c {\displaystyle \beta ={\frac {v}{c}}} 是“贝塔因子”。

对于这两个参考系 S {\displaystyle {\mathcal {S}}} S ¯ {\displaystyle {\bar {\mathcal {S}}}} ,假设一个事件的四维坐标分别为 x μ {\displaystyle {x}^{\mu }} x ¯ μ {\displaystyle {\bar {x}}^{\mu }} 。那么,这两个四维坐标之间的关系为

其中, Λ ¯ μ ν {\displaystyle {\bar {\Lambda }}^{\mu }{}_{\nu }} Λ μ ν {\displaystyle \Lambda ^{\mu }{}_{\nu }} 的逆反,

将这两个四维坐标之间的关系式合并为一,则可得到

因此,可以找到洛伦兹变换矩阵的一个特性:

其中, δ μ ξ {\displaystyle \delta ^{\mu }{}_{\xi }} 是克罗内克函数。

另外一个很有用的特性为

给定一个事件在某惯性参考系的四维坐标,通过洛伦兹变换,就可计算出这事件在另外一个惯性参考系的四维坐标。这是个很有用的物理性质。当研究物理现象时,所涉及的四维矢量,最好都能够具有这有用的性质。这样,可以使得数学分析更加精致犀利。以方程表示,对于两个参考系 S {\displaystyle {\mathcal {S}}} S ¯ {\displaystyle {\bar {\mathcal {S}}}} ,具有这种有用性质的四维矢量 U μ {\displaystyle {U}^{\mu }} U ¯ μ {\displaystyle {\bar {U}}^{\mu }} 满足

在计算这四维矢量对于时间的导数时,若能选择固有时为时间变数,则求得的四维矢量仍旧具有这有用的性质。因为,固有时乃是个不变量;改变惯性参考系不会改变不变量。

假设一个物体运动于闵可夫斯基时空。在“实验室参考系”里,物体运动的速度随着时间改变。对于每瞬时刻,选择与物体同样运动的惯性参考系,称为“瞬间共动参考系”(momentarily comoving reference frame)。在这瞬间共动参考系里,物体的速度为零,因此,这参考系也是物体的“瞬间静止参考系”。随着物体不断地改变运动速度与方向,新的惯性参考系也会不断地改换为瞬间共动参考系。:41-42随着这些不断改换的瞬间同行坐标系所测得的时间即为固有时,标记为 τ {\displaystyle \tau } 。这就好像给物体挂戴一只手表,随着物体的运动,手表也会做同样的运动,而手表所纪录的时间就是固有时。

这物体的运动可以用一条世界线 x ( τ ) {\displaystyle x(\tau )} 来描述。由于时间膨胀,发生于物体的两个本地事件的微小固有时间隔 Δ τ {\displaystyle \Delta \tau } 与从别的惯性参考系 S {\displaystyle {\mathcal {S}}} 所观测到的微小时间间隔 Δ t {\displaystyle \Delta t} 的关系为

所以,固有时 τ {\displaystyle \tau } 对于其它时间 t {\displaystyle t} 的导数为

在闵可夫斯基空间里,两个四维矢量 U μ {\displaystyle U^{\mu }} V μ {\displaystyle V_{\mu }} 的内积,称为闵可夫斯基内积,以方程表示为:

由于这内积并不具正定性,即

可能会是负数;而欧几里得内积一定不是负数。

许多学者喜欢使用相反正负号的 η {\displaystyle \eta }

这样, U μ {\displaystyle U^{\mu }} V μ {\displaystyle V_{\mu }} 的内积改变为

其它相联的量值也会因而改变正负号,但这不会改变系统的物理性质。

从参考系 S {\displaystyle {\mathcal {S}}} 改换至另一参考系 S ¯ {\displaystyle {\overline {\mathcal {S}}}} U μ {\displaystyle U^{\mu }} V μ {\displaystyle V_{\mu }} 的内积为

所以,在闵可夫斯基时空内,两个四维矢量的内积是个不变量::44-46

四维矢量可以分类为类时,类空,或类光(零矢量):

设想一个物体运动于闵可夫斯基时空,则其世界线的任意事件 x μ ( τ ) {\displaystyle x^{\mu }(\tau )} 的四维速度 U μ {\displaystyle U^{\mu }} 定义为:46-48

其中, u = ( d x 1 d t , d x 2 d t , d x 3 d t ) {\displaystyle \mathbf {u} =\left({\frac {\mathrm {d} x^{1}}{\mathrm {d} t}},\,{\frac {\mathrm {d} x^{2}}{\mathrm {d} t}},\,{\frac {\mathrm {d} x^{3}}{\mathrm {d} t}}\right)} 是三维速度,或经典速度矢量。

U μ {\displaystyle U^{\mu }} 的空间部分与经典速度 u {\displaystyle \mathbf {u} } 的关系为

四维速度与自己的内积等于光速平方,是一个不变量:

在物体的瞬间共动参考系里,物体的速度为零,因此,四维速度为

其方向与瞬间共动参考系的第零个基底矢量 e ^ 0 = ( 1 , 0 , 0 , 0 ) M C R F {\displaystyle {\hat {\mathbf {e} }}_{0}=\left(1,0,0,0\right)_{MCRF}} 同向;

其中, M C R F {\displaystyle MCRF} 表示从瞬间共动参考系观察得到的数据。

四维加速度 α μ {\displaystyle \alpha ^{\mu }} 定义为 :46-48

经过一番运算,可以得到洛伦兹因子对于时间的导数:

其中, a = d u d t {\displaystyle \mathbf {a} ={\frac {\mathrm {d} \mathbf {u} }{\mathrm {d} t}}} 是经典加速度。

所以,四维加速度 α μ {\displaystyle \alpha ^{\mu }} 可以表示为

由于 U μ U μ {\displaystyle U_{\mu }U^{\mu }} 是个常数,四维加速度与四维速度相互正交;也就是说,四维速度与四维加速度的闵可夫斯基内积等于零:

对于每一条世界线,这计算结果都成立。

注意到在瞬间共动参考系里, U μ {\displaystyle U_{\mu }} 只有时间分量不等与零,所以, α μ {\displaystyle \alpha ^{\mu }} 为的时间分量为零:

一个静止质量为 m {\displaystyle m} 的粒子的四维动量 P μ {\displaystyle P^{\mu }} 定义为

经典动量 p {\displaystyle \mathbf {p} } 定义为

其中, m r e l {\displaystyle m_{rel}} 是相对论性质量。

所以, P μ {\displaystyle P^{\mu }} 的空间部分等于经典动量 p {\displaystyle \mathbf {p} }

作用于粒子的四维力定义为粒子的四维动量对于固有时的导数:

提出四维动量内的静止质量因子,即可发觉四维力就是静止质量乘以四维加速度:

因此,四维力可以表示为

经典力 f {\displaystyle \mathbf {f} } 定义为

所以, F μ {\displaystyle F^{\mu }} 的空间部分等于 γ f {\displaystyle \gamma \mathbf {f} }

在四维矢量的表述里,存在着许多能量与物质之间的关系。从这些特别关系,可以显示出这表述的功能与精致。

假设,在微小时间间隔 d t {\displaystyle \mathrm {d} t}

相关

  • 一次文献一次文献,又称初级资料、首次资料、一级来源或称第一手资料,是文献学、图书馆学、地理学中指用来做为证据的引文资料, 写作者将其来源方式可以区分成:依据研究资料及方法的不同,
  • span style=color:black;small第四纪冰期/small/span第四纪冰河时期,也称作“第四纪冰期”、“第四纪大冰期”、“第四纪冰河期”、“第四纪冰川期”、“更新世冰川期”、“当前冰河时期”、“末次冰河时期”,是指从258万年前到
  • 名古屋港名古屋港(日语:名古屋港/なごやこう Nagoya-kō)是横跨日本爱知县名古屋市、东海市、知多市、弥富市、海部郡飞岛村的一个港湾。又被当地人简称为名港(名港/めいこう Mei-kō)。
  • 狭叶栎狭叶栎(学名:Quercus stenophylloides),又名狭叶椆、狭叶高山栎、台湾窄叶青冈,台湾特有种,为壳斗科栎属,常绿阔叶树。本种与白背栎(Quercus salicina)型态十分相近,对于两物种是否应
  • 福永街道福永街道是中国广东省深圳市宝安区下辖的一个街道,位于宝安区西南部,深圳市西北部。辖区总面积37.6平方公里,下辖7个社区,7个居委会。总人口46万人,其中户籍人口1.5万人。福永街
  • 国家情报组织土耳其国家情报局,土耳其政府情报机构,建立于1965年。1990年,该机构内部军方人员占35%,现在降到了4.5%。该机构曾从机构现存人员家属中招募成员。土耳其国家情报局与美国及俄罗
  • 英属婆罗州英属婆罗州(或称北婆三邦、北加里曼丹)指的是婆罗洲(加里曼丹岛)北部的三个前英国殖民地,包括现今马来西亚的砂拉越、沙巴以及独立王国文莱。南临印尼加里曼丹。实际上英属婆罗州
  • 桑德琳·波奈儿桑德琳·波奈儿(法语:Sandrine Bonnaire,1967年5月31日-)是法国著名电影演员,她曾以电影《没有屋顶,也没有法律》(Sans toit ni loi)获得1986年法国凯撒奖最佳女主角奖。桑德琳·波奈
  • 比尔·格瓦特尼比尔·格瓦特尼(Bill Gwatney,1959年8月26日-2008年8月13日),美国民主党政治人物,曾任阿肯色州民主党主席(2007年-2008年),也是迈克·戴尔·毕比的财政助手。格瓦特尼出生于阿肯色州,
  • 奥鲁奇雷斯奥鲁奇雷斯(土耳其语:Oruç Reis; 阿拉伯语:عروج بربروس‎; 西班牙语:Aruj; 约 1474年 - 1518年)是奥斯曼帝国阿尔及尔的贝伊与西地中海的贝勒贝伊(英语:beylerbey)(相当于